

CEC/ICMC Conference 2019, Plenary Talk 23.07.2019 – Connecticut Convention Center

Dr. Mykhaylo Filipenko Siemens AG – Corporate Technology – eAircraft

A glimpse into the future of transportation

An Episode of Mythbusters

Focus Topic: Electric Aviation

Ingenuity for life

Agenda

I. (Hybrid-)electric flight (in a nutshell)

II. Mythbusters: Particular Topics

III. Should we invest into (hybrid-)electric?

Page 5 July 2019 Corporate Technology

Siemens eAicraft flight test history

Why do we want to fly electrically?

^{*} IATA technology roadmap, June 2013

^{**} eAir: Market studies

Challenge One – Battery

Energy Density of Various Energy Sources in kWh/kg

Data source: Sion Power

Hybrid Electric Propulsion System

¹⁾ E-machines are capable to fulfill "power generation" and/or "propulsion" depending on e.g. mission profile, requirements and/or mode of operation, 2) Battery Management System (BMS), 3) Internal Combustion Engine (ICE)

Unrestricted © Siemens AG 2019

Agenda

I. (Hybrid-)electric flight (in a nutshell)

II. Mythbusters: Particular Topics

III. Should we invest into (hybrid-)electric?

Myth 1:

"A hybrid-electric A320 is a good airplane"

Keep A320 Design + "Replace turbine with hybrid-electric drive train" = "Not a good concept"

Page 11

^{*}Images taken from G. Atanasov: "Energy Efficient Hybrid Propulsion Concept for Twin Turboprop Aircraft"

Hybrid Electric Propulsion System vs. Conventional

Myth 2:

"We can have on optimized turbine operation point"

ICE for cars

Gas turbine for aircraft

^{*}Images taken from M. Ekwonu et al.: "Modelling and Simulation of Gas Engines Using Aspen HYSYS" and x-engineer.com

Myth 3: "Efficiency of gas turbines cannot be substantially improved"

Comparison of Turbofan and Geared Turbofan

	V2533-A5	PW1133G-JM	
Stage count	1-4-10-2-5	1-G-3-8-2-3	reduced number of stages
Fan diameter	1613 mm 63,5 in	2057 mm 81 in	increased diameter
Bypass ratio	4,5	12	higher propulsive efficiency
Overall pressure ratio	33,4	46	higher thermal efficiency
Fuel burn	Basis	-16 %	reduced fuel burn
Noise emission	Basis	-20 EPNdB (accumulated)	reduced noise emission
NO _x emission	Basis	>-50 % (-50 % CAEP6)	reduced pollutant emission

"We took something so old and simple as a one-stage gear box and that resulted in a fuel burn reduction of 16 %."

^{*}Images taken from J. Sieber: "Aero Engine Roadmap 2050"

Myth 3:

"Efficiency of gas turbines cannot be substantially improved"

	<u>Parameter</u>	Optimized GTF	<u>CCE</u>	CCE large	CCE IC
ĺ	TSFC _{ToC} [g/kN/s]	13.73	12.38	12.09	12.16
	TSFC _{CR} [g/kN/s]	12.62	11.51	11.23	11.45
	TSFC _{TO} [g/kN/s]	8.28	6.89	6.70	6.88
	$d_{Fan}\left[\mathbf{m}\right]$	2.840	2.867	2.867	2.867
	<i>m</i> pps [kg]	5161.3	7283.2	7665.5	6009.5
	ΔFB vs Y2050 GTF[%]	-1.5	-9.6	-11.9	-12.5
	ΔFB vs Y2000 [%]	-45.8	-50.3	-51.5	-51.9

Improvements of 8 % to 10 % in fuel burn

However: CO2 and NOx emissions increase significantly

Unrestricted © Siemens AG 2019

^{*}Images taken from S. Kaiser, M. Nickl: "Investigations of the Synergy of Composite Cycle and Intercooled Recuperation"

^{**}Images taken from **S. Kaiser et al**.: "A Composite Cycle Engine Concept for Year 2050"

Myth 3:

"Efficiency of gas turbines cannot be substantially improved"

60 % NOx reduction

^{*}Images taken from **H. Kayadelen:** "Thermoenvironomic evaluation of simple, intercooled, STIG, and ISTIG cycles"

Distributed electric propulsion:

SIEMENS

Increasing $\frac{c_L}{c_D}$ by utilizing the scale behavior of electric motors

Ingenuity for life

Conventional twin-engine

2 propellers

 $\frac{C_L}{C_D} \sim 16$

^{*}Images taken from **M. Hepperle** (2016)

^{**} Data source: G. Atanasov (2018)

A consequence of VTOLs:

New operation concepts

^{*}Images taken Uber Elevate

Myth 4:

"Urban air mobility will solve urban congestion problems"

Example: **Munich Metropolitan Area**4.5 million inhabitants → 8.7 million trips/d

1% of trips with UAM: 87.0000 trips/d 10% of trips with UAM: 870.000 trips/d

Comparison:

MUC: 1.000 aircraft moves/d

^{*}Following the Keynote of P. Plötner: "Future Perspectives of Aviation for Urban and Regional Mobility" (2019)

Myth 4:

"Urban air mobility will solve urban congestion problems"

SIEMENS Ingenuity for life

Capacity:

- > 1000 landings/h (12 pads, 23 s/landing)
- > 150 landings/h (4 pads, 96 s/landing)
- > 24 landings/h per pad (60 s/landing)

Example: Munich

Operating hours (06:00 - 23:00)

- 1 % of trips with UAM:
- > 61 large vertiports
- > 126 medium vertiports
- > 213 small vertiports
- 10 % of trips with UAM:
- > 614 large vertiports
- > 1365 medium vertiports
- > 2132 small vertiports

^{*}Following the Keynote of P. Plötner: "Future Perspectives of Aviation for Urban and Regional Mobility" (2019)

Myth 4:

"Urban air mobility will solve urban congestion problems"

Capacity:

- > 1000 landings/h (12 pads, 23 s/landing)
- > 150 landings/h (4 pads, 96 s/landing)
- > 24 landings/h per pad (60 s/landing)

Example: Munich

Operating hours (06:00 - 23:00)

- 1 % of trips with UAM:
- > 61 large vertiports
- > 126 medium vertiports
- > 213 small vertiports

10 % of trips with UAM:

- > 614 large vertiports
- > 1365 medium vertiports
- > 2132 small vertiports

Public transport in Munich:

- > 100 underground stations
- > 150 suburban stations
- > 173 tram stations
- > 1006 bus stops

Share:

- > 24 % in Munich City
- > 11 % in Munich Suburbs

^{*}Following the Keynote of P. Plötner: "Future Perspectives of Aviation for Urban and Regional Mobility" (2019)

Myth 5: "Electric aircraft is silent"

^{*}Following the Keynote of J. Delfs: "E2Flight = silent ?" (2019)

- FFT analysis of EXTRA330 overflight reveals that the electric version has significantly lower noise emissions
- Probably due to less torque ripple than ICE

Myth 5:

"Electric aircraft is silent"

> Take-off:

engine noise

- o jet
- o fan tonal (+ broadband)
- o (compressor)
- > Approach:

engine noise

- o jet
- o fan broadband (+ tonal)
- o (combustion + turbine)

airframe noise

- o high lift devices
- landing gears
- parasitic sources

Page 24

^{*}Following the Keynote of J. Delfs: "E2Flight = silent ?" (2019)

Myth 5:

"Electric aircraft is silent"

- Many additional noise sources beyond the propulsion unit
- Solely replacing the gas-turbine of a turbo-fan with an electric motor will not have a hearable effect since other noise sources prevail

^{*}Following the Keynote of J. Delfs: "E2Flight = silent?" (2019)

Myth 5: "Electric aircraft is silent"

The aircraft design space that is available due to hybrid-electric propulsion could be used to build low noise emission aircraft

Unrestricted © Siemens AG 2019

^{*}Following the Keynote of J. Delfs: "E2Flight = silent?" (2019)

^{*}Image courtesy of NASA and Airbus Group

Agenda

I. (Hybrid-)electric flight (in a nutshell)

II. Mythbusters: Particular Topics

III. Should we do invest into (hybrid-)electric?

A comparison of designs based on electric propulsion

SIEMENS

Ingenuity for life

*Taken from M.Strack: "Conceptual Design Assessment of Advanced Hybrid Electric Turboprop Aircraft Configurations" (2018)

Unrestricted © Siemens AG 2019

Page 28

July 2019

Mission distance: ~ 800 nm

Advantages of (hybrid) electric propulsion:

Mission Profile

Design Range of PHA2

Page 29 July 2019

Do we need superconductivity for that?

Breguet-Formula (Turbo-Electric):

$$R = \frac{v}{g \cdot SFC} \frac{C_L}{C_D} ln \left(\frac{m_{fuel} + m_{empt}}{m_{empt}} \right)$$

Educated guess on power density (incl. heat exchangers):

Component	Warm	Cold
Electric Machines	10 kW/kg	25 kW/kg —
Power Electronics	30 kW/kg	60 kW/kg
Cables	40 kW/kg	100 kW/kg
	\	↓

~ 10% Extra Range

10.0

12.5

15.0 17.5

20.0

10000

9000

8000

7000

6000

2.5

5.0

Flight Range [km]

Myth 6:

Superconductivity is an extraordinary complex technology

Siemens eAir 10 MW HTS Design

Brushless-DC Motor

Aircraft Turbo-Fan Propulsor

Last Slides – Key Messages: We don't have to wait long

Ingenuity for life

We will have empirical evidence soon!

July 2019

Last Slides

Rohstoff	2010 \$	2011 \$	2012 \$	2013 💠	2014 \$	2015 \$
Gold in US-Dollar pro Unze	1.225,46	1.569,52	1.666,54	1.410,8	1.266,34	1.160,59
Graphit in US-Dollar pro Tonne	1.514,58	2.511,46	2.487,5	1.400	1.325	1.175
Indium in US-Dollar pro Kilogramm	567,26	735,31	625	613,33	718,2	412,33
Kadmium in US-Dollar pro Kilogramm	4,09	2,95	1,92	2,02	1,8	1,1
Kobalt in US-Dollar pro Kilogramm	45,33	38,6	30,75	29,01	31,81	29,11
Kupfer in US-Dollar pro Tonne	7.534,18	8.820,53	7.949,44	7.332,19	6.859,2	5.501,12
Lithium-Minerale in US-Dollar pro short t*	676,94	745	821,22	821,22	6.526,59	6.375,03
Magnesit in Euro pro Tonne	70	91,83	90,54	70	70	71,67
Magnesium (Magnesium) in US-Dollar pro Tonne	2.920	3.127,7	3.134,72	2.726,04	2.481,14	2.146,91
Mangan in US-Dollar pro Tonne	2.549,17	3.316,46	2.786,67	2.319,71	2.225,42	1.818,75

Invest in Lithium, because the future of flight is electric!

Page 33 July 2019 Corporate Technology

Dr. Mykhaylo Filipenko

Head of center of competence electrical machines 1

Siemens Corporate Technology

Next47 - eAircraft

CT CTP AIR AS ELM1

E-mail:

mykhaylo.filipenko@siemens.com

Internet

siemens.com/corporate-technology

Page 34 July 2019 Corporate Technology