Enhancement Presentation

Carlos Abellan Orsay December 17th, 2009

Enhancement Presentation

- Summary
 - The analogical mezzanine prototype
 - Ideas
 - Schematics
 - Physical dimensions
 - Connectors
 - Discrete OP Amp simulations
 - Previous problems
 - Calculations
 - Results

- Ideas to discuss
 - About noise and grounding
 - Different strategies with grounding
 - About connectivity
 - Flexibility to test any analog architecture
 - About delay evaluation
 - Flexibility to evaluate all possible delay scenarios

Noise and grounding

- Connectivity
 - Flexibility to test any analogical architecture

Tyco 619134-1

Char. Imp. 50 Ohms
Freq. Range Up to 6 GHz
Return Loss –20dB min.
Shield Effect. –60 dB min.
Resistance < 70 mOhm

Ratings

Voltage: 125 volts AC

• DC Current: 4.8 A max.

- Delay evaluation
- 2xClock, 2x Output Enable, Mux Select

Schematics

- 4 Instances of 2 channels each
- 1 With Delay Control
- Clock Conversion to single ended
- Digital Connector
- Analogical Connector
- Auxiliary Connectors

Schematics: ADC

Schematics: Connector

Schematics: Right Connector

Schematics: Left Connector

Physical Dimensions

- Mounting Holes for their use if needed.
- Digital connectors must be placed, not already agreed on exact position and direction.

Physical Dimensions

- Connectors
 - Hirose FX8C-140S-SV5
 - 10 mm tall
 - 49 mm long
 - 140 pins
 - Male and female, not yet agreed on which to use on the digital motherboard and which on the analogical mezzanine.

Enhancement Presentation

- Summary
 - The analogical mezzanine prototype
 - Ideas
 - Schematics
 - Physical dimensions
 - Connectors
 - Discrete OP Amp simulations
 - Previous problems
 - Calculations
 - Results

Discrete Op Amp: Previous Problems

- Discrete Op Amp: Previous Problems
 - The previous OP Amp must also be differential in order to cut the feedback. The same happends to the previous stage.

Discrete Op Amp: Calculations

Zb=Z0; Same contribution of both outputs;

$$\begin{aligned} \text{Vi} &== \text{V1} \star \frac{\text{Par}[\,(\text{R2} + \text{Z0})\,\,,\,\,\,\text{Zi}\,]}{\text{Par}[\,(\text{R2} + \text{Z0})\,\,,\,\,\,\text{Zi}\,] + \text{R1}} + \text{V2} \star \frac{\text{Par}[\,\text{R1}\,\,,\,\,\,\text{Zi}\,]}{2 \star \text{Z0}} \,; \\ \\ &\frac{\frac{\text{Par}[\,\text{R1}\,\,,\,\,\,\text{Zi}\,]}{2 \star \text{Z0}}}{\frac{\text{Par}[\,(\text{R2} + \text{Z0})\,\,,\,\,\,\text{Zi}\,]}{\text{Par}[\,(\text{R2} + \text{Z0})\,\,,\,\,\,\text{Zi}\,] + \text{R1}}} == \text{G} \,; \\ &\frac{1}{2} \left(2 \,\text{G} \,\text{Z0} - \text{Zi} - \text{G} \,\text{Zi} + \sqrt{8 \,\text{G} \,\text{Z0} \,\text{Zi} + \left(\text{Zi} + \text{G} \,(-2 \,\text{Z0} + \text{Zi})\,\right)^2}} \right) \end{aligned}$$

- Discrete Op Amp: Calculations
 - Also calculations for the integrator:
 - Same ideas. Adaptation & Same Contribution.

Discrete Op Amp: Calculations

Simulation Results

Discrete Op Amp: Results

Conclusion

- A differential output was needed because of the interface with the ADC
- NOT a differential scheme, only uses differential OP Amps
- Studying the possibility of decreasing power
- Relatively low resistances → low noise, possible to decrease them even more, under study
- Needs noise and linearity studies