

Low noise preamplifier

Upgrade of the front end electronics of the LHCb calorimeter

Outlook

- I. Introduction
- II. LAPAS chip for ATLAR LAr calorimeter
- III. Voltage output vs current output
- IV. Current output / mixed feedback
- V. Current output / current feedback
- VI. Discussion

I. Introduction: requirements

• Requirements as agreed during last year (PM gain 1/5):

	Value	Comments
Energy range	0-10 GeV/c (ECAL)	1-3 Kphe / <i>G</i> eV
	Transverse energy	Total energy
Calibration	4 fC /2.5 MeV / ADC cnt	4 fC input of FE card: assuming 25 Ω
		clipping at PMT base
		12 fC / ADC count if no clipping
Dynamic range	4096-256=3840 cnts :12 bit	Enough? New physic req.? Pedestal
		variation? Should be enough
Noise		< 0.7 nV/√Hz
Termination	50 ± 5 Ω	Passive vs. active
AC coupling	Needed	Low freq. (pick-up) noise
Baseline shift	Dynamic pedestal subtraction	
Prevention	(also needed for LF pick-up)	Number of samples needed?
Max. peak current	4-5 mA over 25 Ω	50 pC in charge
	1.5 mA at FE input if clipping	
Spill-over	Clipping	Residue level: 2 % ± 1 % ?
correction		
Spill-over noise	« ADC cnt	Relevant after clipping?
Linearity	< 1%	
Crosstalk	< 0.5 %	
Timing	Individual (per channel)	PMT dependent

See talk about noise in June's meeting:

http://indico.cern.ch/materialDisplay.py?contribId=1&sessionId=0&materialId=slides&confId=59

I. Introduction: active line termination

- Electronically cooled termination required:
 - 50 Ohm noise is too high
 - e. g. ATLAS LAr (discrete component)
- Common gate with double voltage feedback
 - Inner loop to reduce input impedance preserving linearity and with low noise
 - Outer loop to control the input impedance accurately

$$Z_i \Box \frac{1/g_{m1}}{G} + R_{C1} \frac{R_1}{R_1 + R_2}$$

- Transimpedance gain is given by R_{C1}
- Noise is < 0.5 nV/sqrt(Hz)
 - Small value for R1 and R2
 - Large gm1 and gm2
- · Need ASIC for LHCb
 - 32 ch / board: room and complexity

II. LAPAS chip for ATLAS LAr upgrade

• TWEPP 09

LAPAS: Liquid Argon PreAmplifier Shaper 8WL process ASIC 2100 X 1800um ina_3 inb_1 ina_4 ino_2 vdd outo_1 outb_1

LAPAS: A SiGe Front End Prototype for the Upgraded ATLAS LAr Calorimeter

Mitch Newcomer
On Behalf of the ATLAS LAr Calorimeter Group*

Special Acknowledgment of the significant contributions of Emerson Vernon, Sergio Rescia (BNL) and Nandor Dressnandt (Penn) to this work.

II. LAPAS chip for ATLAS LAr upgrade

Technology:

- IBM 8WL SiGe BiCMOS
- 130 nm CMOS (CERN's techno)
- More radhard than needed:
 - FEE Rad Tolerance TID~ 300Krad,
 - Neutron Fluence ~10¹³ n/cm²

Circuit is "direct" translation

- Need external 1 uF AC coupling capacitor for outer feedback loop
- Three pads per channel required:
 - Input
 - Two for AC coupling capacitor
- Voltage output

III. Voltage output versus current output

Voltage output:

- Pros:
 - Tested
- Cons:
 - I (PMT) -> V and V -> I (integrate)
 - Larger supply voltage required
 - External components
 - 2 additional pads per channel

Current output ("à la PS")

- Pros:
 - "Natural" current processing
 - Lower supply voltage
 - All low impedance nodes:
 - Pickup rejection
 - No external components
 - No extra pad
- Cons:
 - Trade-off in current mirrors:
 linearity vs bandwidth

Mixed mode feedback:

- Inner loop: lower input impedance
 - Voltage feedback (gain): Q2 and Rc
- Outer loop: control input impedance
 - Current feedback: mirrors and Rf
- Variation of LAr preamplifier
- · Current gain: m
- Input impedance

$$Z_i \Box \frac{1/g_{m1} + Re}{g_{m2}Rc} + mR_f$$

Transient simulation

• Dynamic input impedance and linearity (mirrors to be optimized)

Monte Carlo simulations: mismatch variation

· Monte Carlo simulations: process variation

- Delay line clipping
- 12 m cable between PMT and FE
- Preamplifier (transistor level)
- Integrator (ideal)
- Pedestal subtraction (ideal)
 - Skin effect taken into account in cable

VCC

ØT_cur

• Full channel simulation: transient response

• Full channel simulation: noise

Noise Response

Current mode feedback:

- Inner loop: lower input impedance
 - Current feedback (gain): mirror: K
- Outer loop: control input impedance
 - Current feedback: mirror: m
- · Current gain: m
- Input impedance

$$Z_i \square \frac{1/g_{m1} + \text{Re}}{1+K} + \frac{K}{1+K} mR_f$$

- · Current mode feedback
 - Optical comunications
 - SiPM readout
- Better in terms of ESD:
 - No input pad connected to any transistor gate or base

• AC simulation

Transient simulation

Dynamic input impedance and linearity

· Monte Carlo simulations: mismatch variation

Monte Carlo simulations: process variation

• Full channel simulation: transient response

• Full channel simulation: noise

Noise Response

VI. Discussion

- First simulations of current amplifiers are promising:
 - Z_{in} =50 Ω for full dynamic and BW=100 MHz
 - Noise: 400 µV rms after integration and pedestal subtraction
 - MAIN ISSUE: linearity: 2-3 % error (mirrors not optimized)
 - Trade off: linearity / BW / noise
- Precise analysis:
 - Precise analysis of feedback loops: stability!
 - Noise
- · Optimize current mirrors: linearity / dynamic Zil
- Effect of process variation discussed in general talk
- · Plans:
 - Finalize study/optimization
 - Decide to send voltage output or current output (or both)
 - When? March (not mini@sic run) / June