

Occupancy at High Luminosity

Frédéric Machefert

Laboratoire de l'Accélérateur Linéaire December 18th, 2009

Average number of collisions per B event

- The luminosity is planned to reach up to 2x10³³
 - The average pile up from 2x10³² up to 2x10³³ increases from 1.2 up to 4.0
 - This is evaluated from the events having at least one collision

Type of Event per crossing

The pile up at 12 positions

- The pile up has been evaluated by getting the occupancy of the calorimeter from single minimun-bias events.
- Pile up histograms have been extracted from the actual LHCb simulation and by modifying the CaloDigi algorithm in Boole.
- The pile up has not been "measured" for each cell (more than 6000)
 - 12 points have been chosen
 - The pile up at a position on the calorimeter is obtained by linear interpolation
 - This is not the best solution!

A2	11	8	15	8	13	· ·	13
Α	10		14	0	12		12
	9		13	Impa	ıct	2	11
A1	8	0 6	12	^	10	·	10
1 0	3 2	13	13 12		0		9
13 1 12 11	0 13 9 12 8 11	11 10	11 10		8	·	8
rade Mee	07 10 6 • 5 8	• 9 8	9	•B1	B×	B	2 •

The pile up at 12 positions

Detector Resolution

Pile up

- From the previous plots a minimum bias event will contribute to
 - From 4 (inner, outer) to 3 (middle) ADC counts per cell on average
- We make the hypothesis that any collision induces such a pile up
 - For a B event with N collisions (including the one responsible for the B)
 - Add N times the average collision pile up
 - Counting on 9 cells (cluster), the pile up would reach on average
 - 36/27 ADC counts in a cluster

Electronics Noise

- This may be compared with the average noise of the electronics
 - I took what we have now as the baseline for the upgrade
 - In a cell
 - Incoherent noise : 1.1ADC
 - Coherent noise : <0.1 ADC
 - In a 3x3 cluster
 - − ~ 4ADC

Resolution

• The present accepted resolution at 2x10³² is

$$\frac{\sigma(E)}{E} = \frac{0.1}{\sqrt{E}} \oplus 0.015$$

But is probably closer to

$$\frac{\sigma(E)}{E} = \frac{0.1}{\sqrt{E}} \oplus 0.015 \oplus \frac{0.050}{E \,\theta} (Pile \, up) \oplus \frac{0.010}{E \,\theta} (Electronics)$$

And could reach at 2x10³³

$$\frac{\sigma(E)}{E} = \frac{0.1}{\sqrt{E}} \oplus 0.015 \oplus \frac{0.175}{E \theta} (Pile up) \oplus \frac{0.010}{E \theta} (Electronics)$$

Effect of the pile up on the resolution

- Pile up is already an important effect at the current luminosity
- At higher luminosity it could prevent from doing any low Pt photon physics
 - Take 2 examples
 - High Pt photons : $B_s \to \phi \gamma$, <Pt>> ~ 3.5GeV/c , θ ~ 100 mrad
 - Low Pt photons : B \rightarrow D*K , <Pt,> ~ 400MeV/c , θ ~ 100 mrad

Energy Resolution for Low/High pt (%)										
LuminosityRe	esolution C	aloPile Up	Electronics	Total						
2,00E+032	6.1/2.6	12.5/1.4	2.3/0.26	14.1/3.0						
5,00E+032	6.1/2.6	16.3/1.9	2.3/0.26	17.5/3.2						
1,00E+033	6.1/2.6	25.0/2.9	2.3/0.26	25.8/3.9						
2,00E+033	6.1/2.6	43.8/5.0	2.3/0.26	44.2/5.6						

 Already at high Pt, the resolution is excessively degraded. Low Pt extreme case looks hopeless...

Cross-checks on Pile Up predictions

E (GeV)

- The only indications on the pile up at high luminosity come from an approximative simulation of the effect
 - Use Boole generated events at 2x10² cm⁻¹.s⁻²
 - Select single collision events
 - Extract occupancy for specific cells in ADC counts for min-bias events
 - Generate a MC event at any luminosity by « adding » the contributions of N « single collision events »
 - Event per event get an appropriate random N (depends on the luminosity)
 - Take into account the LHC bunch structure (identical to nominal)
 - Extract random occupancy according to Boole MC probability densities
- The conclusion is that the photon resolution is degraded by the pile up. The effect is not negligible

$$\frac{\sigma(E)}{E} = \frac{0.1}{\sqrt{E}} \oplus 0.015 \oplus \frac{0.175}{E \theta} (Pileup) \oplus \frac{0.010}{E \theta} (Electronics)$$

Comparing predictions up to 5x10² cm².s⁻¹

- Dotted lines: 2 MC (2 and 5x10³² cm⁻².s⁻¹)
 asking for 1 collision per crossing only
- · Lines: Same two MC samples without the collision constrain (pile up included).

Signal in 12 cells on the ECAL surface Min-bias events

- The same pile up events as previously (Gauss – kept for comparison)
- The emulation of the pile up by adding up several single collision min-bias events (not Gauss and up to 2x10³³).

Comparing predictions up to 5x10² cm².s⁻¹

Number of collisions per crossing in the high luminosity simulation (private code) for $2x10^{2}$, $5x10^{2}$, 10^{3} and $2x10^{3}$ cm².s⁻¹ (histo). Number of collisions in the two Gauss MC samples at $2x10^{2}$ and $5x10^{2}$ cm⁻².s⁻¹ (dots).

RMS of the signal/PileUp in 12 (3x3)-clusters on the ECAL surface (Min-bias events) for luminosities of 2x10², 5x10², 10³ and 2x10³ cm².s⁻¹.

This is evaluated around the 12 points by simulating 9 similar cells.

Photon and Pion reconstruction

Introduction

- The purpose is to have a rapid idea of the effect of the luminosity on photon/pion reconstruction
 - The answer is not so reliable as the full simulation
 - But, this is very fast (I could produce millions of events in each case looked at)
 - Moreover, I wanted to be able to "tune" the corrections of the electronics
 - Subtract on the smallest signal among the N last for example
- This is a small monte-carlo with the following ingredients
 - The LHC bunch structure
 - Gaps in the bunch structure are taken into account
 - N events means in fact N bunch crossing (empty or not) or 25 ns
 - The energy deposit shape which is in Brunel to describe photon/pions
 - One description per zone
 - The usual calorimeter energy resolution
 - An estimation of the pile up per proton-proton collision
 - An estimation of the noise
- The program does the following
 - It generates collisions according to the luminosity
 - Creates a neutral pion and reconstruct the two photons taking into account the previously mentioned effects

LHC bunch structure

- The code
 - 0-2-3: No beam/A single beam
 - 1: Two beams, collision allowed

What will be the bunch structure later?

The photon deposit (I)

The energy deposit : double exponential function

- This energy is integrated
 - on each the 9 cells of the 3x3 cluster
 - taking into account the impact position in the central cell

The photon deposit (II)

- The position is evaluated
 - By an energy weighted barycenter

Corrected for the S-shape

Neutral pion generation

- The purpose is to study the effect on physical photons and pions
 - The (Pt,E) distribution of the neutral pions from B->3 π decays is taken from the LHCb simulations

- A "random π^0 " from the above 2D-distribution is chosen
 - The corresponding photons are calculated
 - The impact position/zone/energy are defined
- The possible overlap between photons is not taken into account
- There is never any pollution by conversion... This will slightly improve the mass resolution

Energy Resolution (I)

- What do we get at 2x10³²?
 - Energy resolution is fitted by an asymetric gaussian shape
 - When the resolution is plotted, the two sigmas are given

Inner region

Energy Resolution (II)

- Resolution summary at 2x10³² for the Inner part
 - The pile up is far from being a small effect
 - Pile up distort the energy shape
 - The subtraction/noise only slightly degrades the sigmas

Energy Resolution (III)

- 210³² Middle part
 - Here the pile up effect is more limited
 - This is expected: pile up is smaller in the middle region

Energy Resolution (IV)

- 2x10³² Outer part
 - In the outer, the pile up is of the same order as in the inner because of the cell size
 - The pile up effect seems to be less
 - The Pt of the signal is larger and the pile up is lower with respect to the signal

Energy Resolution vs Luminosity

- Varying Luminosity All effects included Inner part
 - The pile up starts to be a problem as we typically degrade by a factor 2 the resolution going from 2x10³² to 10³³

Energy Resolution

- Varying Luminosity All effects included Middle/Outer part
 - Pile up is not so annoying here as in the inner

Pion mass reconstruction

- Mass resolution wrt the luminosity
 - Fit with a sum of two gaussians
 - The contribution from the larger component gets more and more important
 - Globally the resolution is degraded by a factor 2 from 2x10³² to 10³³
 - The pile up effect is still visible by the mean of the second gaussian

Mass Resolution

The simulation shows already a slight asymmetry at 2x10²²

LHCb simulation "loose" MC Assoc cut

Conclusions on Detector Resolution

- Pile up is a large contribution at 2x10³² and becomes the largest one above
 - Notice that the "accepted resolution" was measured in test beam without any material in front of the ECAL
 - The "real" intrinsic resolution of the ECAL looks closer to
 - Ref: http://indico.cern.ch/getFile.py/access?contribId=3&resId=1&materiaIId=slides&confId=25234
- The effect could be limited by a factor $\sqrt{(4/9)}$ by taking 2x2 cells
- This is not possible in the inner as the cell size would lead to a large leakage
- In 201?, the inner part of the calorimeter should be replaced
 - the resolution will be much degraded by the accumulated dose
- What is the purpose of replacing the inner part of the calo if the resolution is extremely degraded by the pile up anyway?
- Could we imagine a dense detection medium material (PbW0) in the inner
 - Reduce the cell size by a factor 1.5
 - Reduce the pile up effect by a factor 1.5...

Conclusion on Reconstruction

- The pile up effect is already not negligible at the present luminosity
 - Resolution is estimated with particle gun?
 - The MC associator rely on the energy matching between the MC photon and the cluster energy
 - Does this bias the "visibility" of the effect
- The pile-up effect typically degrades by a factor two the photon energy and pion mass resolutions between 2x10³² to 10³³ in the inner
- The effect is not so strong in the two other regions
- This will lead to adjustment on the B mass cut windows in the analysis