The ALPHA-g antihydrogen gravity magnet system

MT26, 9-23-2019

Chukman So / TRIUMF

On behalf of the ALPHA collaboration

Magnetic minimum trap

- Anti-atoms feel a potential $\propto |\vec{B}|$
- O(1 Kelvin) / O(1 meV) confinement with
 2 T octupole + 1 T mirror-coils + 0.65 T uniform Bz
- >> 100 antihydrogen atoms

Compensated escape

- Measure gravity by releasing anti-atoms axially
- Escape balance depends on relative coil strength and gravity
- Signal = 7 G
 1% precision = 0.07 G
 in relative field between the two ports

Compensated escape

- Measure gravity by releasing anti-atoms axially
- Escape balance depends on relative coil strength and gravity
- Signal = 7 G
 1% precision = 0.07 G
 in relative field between the two ports

Compensated escape

- Measure gravity by releasing anti-atoms axially
- Escape balance depends on relative coil strength and gravity
- Signal = 7 G
 1% precision = 0.07 G
 in relative field between the two ports

- 2 cryostats
- All NbTi conductors @ 4 K
- 2 pairs 1000 A hybrid leads

- Outer bobbin 15 pairs 150 A leads Mirror copy 1 pair 200 A leads Current leads LHe reservoir Corrector coil Boost solenoid Inner wet cryostat -Precision coil Corrector octupole Precision region Detector -Inner magnets Background Outer dry cryostat solenoid Solenoid shield Long octupole Short octupole - Coil Strong trapping region
- 20 coils on outer bobbin
- 3 octupoles on inner tube

Octupole tube

4 correctors

Inner magnets ~ 2 m

Chris

Octupoles

- Layers of serpentine windings encased in epoxy and fibreglass
- Made at BNL using a CNC wire laying stylus machine
- $11-15 \text{ turns} \times 8 \text{ layers}$
- 1.1 mm dia., max. 1000 A
- Each bi-layer made of an unbroken conductor, spliced outside
- Two circuits overall

Octupoles

- Finite fabrication tolerance
- Measurements need to be resilient
- Simulate by wire model, compare field difference between two ports
- A balance:
 - Error increases with Δz (approach end turns)
 - Gravity signal decreases with Δz
- Coils positioned for max. signal to noise

Octupoles

- Anti-atoms need to be transferred through end turns
- Half of them opposes the background Bz, induces |B| weakness near wall
- Near total loss of confinement
- Solution:
 - Shield hole of inner layers with longer outer layers
 - Stagger turns
- ~ 3% loss of confinement

Coils

- Layers of tight-packed helical coils embedded in epoxy and wrapped with tensioned fibreglass
- Also made at BNL
- $50 200 \text{ turns} \times 8 12 \text{ layers}$
- Single unbroken conductor per coil
 - Normal coils0.33 mm dia., max. 130 A
 - Precision coils0.38 mm dia., max 10 A

Coils

- Wire thickness tolerance
 - → turn count fluctuation
 - → asymmetry between coil pairs
- Shim coils to match pairs
 - Photo for each layer
 - Data obtained: turn count, turn position, layer jump position
 - Pause fab after 2nd coil's last layer
 - Create wire model and calculate profile, simulate unwinding last turns of 2nd coil
 - Compare normalised profile (normalisation = current freedom)
 - Unwind for real
- Overcome lack of pre-wind control
- Achieve match at all r to 10^{-4}

Correctors

- For the balanced escape experiment: bottom and top barriers must match, both on-axis and off-axis
- Ignoring octupole: coils of different axial lengths needed
- In practice:
 - Length has to change during release ramp
 - Instead of altering coil, tweak length by rebalancing some current to (longer) corrector coil

Correctors

- Octupole field introduces further complications
- Corrector octupole: more knobs
- Result: field match to $O(5 \times 10^{-6})$ T)

Summary

- A wide range of features to achieve magnetic control for physics
 - Too many to list come and ask!
- Developing magnetometry
- Developing environmental field solutions
- Finish magnet system fabrication during LS2
- Magnet mapping in LS2
- Physics from 2021

Persistent field

- Enduring current loops induced by change in field
- Not directly controlled
- Past ALPHA traps persistent field ~ 10 G
- Geometry motivated by need to mitigate this
- Strategies:
 - Minimal NbTi in Precision Region
 14 24 % of past traps
 - Expansion cooling from Strong Trapping Region
 Make sure anti-atoms survive in shallow trap
 - Fancy new conductors
 63 filaments → 678 filaments per wire
 - Symmetrise magnetic history mirror copy on top

