Magnetic Vector Potential-Based Formulations for Electromagnetic Modeling of Superconductors: an Alternative to the *H* Formulation

F. Grilli, V. Zermeño, R. Brambilla, T. Benkel, A. Morandi, E. Pardo

H formulation: the de facto standard for simulating electromagnetic behavior of HTS

INSTITUTE OF PHYSICS PUBLISHING

SUPERCONDUCTOR SCIENCE AND TECHNOLOGY

doi:10.1088/0953-2048/19/12/004

SUPERCONDUCTOR SCIENCE AND TECHNOLOGY doi:10.1088/0953-2048/20/1/004

Supercond. Sci. Technol. 19 (2006) 1246-1252

Numerical solution of critical state in superconductivity by finite element software

Z Hong, A M Campbell and T A Coombs

Development of an edge-element model for AC loss computation of high-temperature superconductors

Roberto Brambilla¹, Francesco Grilli^{2,3} and Luciano Martini¹

INSTITUTE OF PHYSICS PUBLISHING

Supercond, Sci. Technol. 20 (2007) 16-24

At least 45 research groups have used it since 2006!

Complex HTS applications have been successfully simulated with the *H* formulation

Roebel cables

Large magnets

Xia et. al 2019 SuST 32 095005

Why look for alternatives?

- Efficiently simulate HTS tapes in electrical machines
 - \rightarrow T-A formulation

- Use different constitutive law from power-law
 - → Quasi critical state model

T-A formulation

So far used to simulate thin superconductors

• Model proposed by Zhang et al. 2017 SuST 30 024005

• Magnetic vector potential $A \rightarrow$ magnetic field (everywhere)

• Current vector potential $T \rightarrow J$ in infinitely thin superconductors

Very easy to apply the desired current

Here extended to thick superconductors

Bi-2223 or MgB₂ tapes

Stacks of coated conductors

Sumitomo, Ansaldo Superconductors

Uglietti et al. 2014 IEEE TAS 24 4800704

How do we impose the desired current?

$$I = \iint_{S} \mathbf{J} \, \mathrm{d}S = \iint_{S} \nabla \times \mathbf{T} \, \mathrm{d}S = \oint_{L} \mathbf{T} \, \mathrm{d}l$$

Application to HTS coils

Insulated turns

=

1D approach

Theva GmbH

2D approach

Application to HTS machines

We can now simulate superconducting turns in HTS machines!

Superconducting motor SUTOR: Oswald et al. 2012 Physics Procedia 36 765

Everything done in the same model

Superconducting motor SUTOR: Oswald et al. 2012 Physics Procedia 36 765

The coupling scenario strongly influences the AC losses of the stator's coils

Quasi critical state

model

Parametric solution of magnetostatic problem with time as parameter

$$\nabla \times (\nabla \times \mathbf{A}) = \mu_0 \mathbf{J}$$

$$J = J_{\rm c} \, \operatorname{erf} \left(\frac{E}{E_{\rm c}} \right)$$

$$E = -\frac{\partial A}{\partial t} - \nabla \phi$$

$$\frac{\partial A}{\partial t} \approx \frac{A_{t+\Delta t} - A_t}{\Delta t}$$

Campbell 2007 SuST **20** 292 Gömöry & Inanir 2012 IEEE TAS **22** 4704704 Gömöry & Shen 2017 SuST **30** 064005

A "quasi" critical state model

- AC magnetization of an elliptical conductor
- Magnetization loops change with frequency
- Due to smooth *E-J* relationship

Can a single static calculation predict the cyclic AC losses of an HTS tape?

Yes, if we know the field distribution at the peak*

^{*}Claassen 2006 APL 88 122512

^{*}Campbell 2007 SuST **20** 292

^{*}Pardo et al. 2007 SuST 20 351

The static model satisfactorily predicts the total losses of an HTS coated conductor

- In-phase AC current and AC field
- Various field orientations
- Perpendicular field component dominates

About one second per simulation!

Conclusions

T-A formulation

- Efficient tool for modeling HTS in electrical machines
- Different coupling scenarios considered

Quasi critical state model

- Departure from CSM behavior at low frequency
- Promising for quick one-step calculation of AC losses (single tapes)

Thank you very much

for your attention!