

Outline

- Introduction
 - FAIR@GSI
 - Heavy Ion Synchrotron SIS100
- SIS100 Dipole Magnets
 - Design
 - Testing Strategy
- GSI Test Facilities for the SIS100 Magnets
- Testing Measurement Systems
- Test Results for the SIS100 Series Dipoles
- Summary and Outlook

2

Facility for Antiproton and Ion Reseach

Heavy Ion Synchrotron SIS100

SIS100 = Schwerionensynchrotron 100 [Tm] = Heavy ion synchrotron (beam rigidity 100 [Tm]*)

- Hexagonal, circumference 1083.60 m
- Operational modes:
 - ✓ Ultra High Vacuum (10⁻¹¹ mbar)
 - Adsorption by cold vacuum chamber (10 15K)
 - Superconducting (magnet) accelerator
 - ✓ Fast-ramp machine ~0.5 sec. to maximum field

*Beam rigidity 100 [Tm] = Bending dipole field 1.9 [T] × Bending radius 52.632 [m]

SIS100 Dipole Magnets: Design

Cryo-dipole module

- Super ferric, window frame magnets
- Curved magnet
- SC coil (4 turn per pole)
- Nuclotron type cable
- Cooling with 2-phase He@ 4.5K

Main parameters		
Number of the magnets in SIS100	108	
Effective length L _{eff}	3.062	m
Usable aperture	60 x 120	mm x mm
Bending angle	3 1/3	deg.
Bending radius	52.632	m
Nominal Field	1.9	Т
Ramp rate	4 @1Hz	T/s

Cold mass with beam chamber

Magnet cross section

Nuclotron cable

- 1 Cooling tube CuNi
- 2 SC wire NbTi
- 3 CrNi wire
- 4 Kapton tape

SIS100 Dipole Magnets: Testing Strategy

Series dipoles are manufactured at Bilfinger Noell GmbH, Germany

At contractor site:

- Factory Acceptance Test (FAT)
 - quality inspections on different production steps (e.g., yoke geometry for half yokes before and after welding, after assembly with the coil)
 - ✓ functionality tests @ 300K (components of assembly, assembled magnet...)
 - ✓ measurement protocols
 - quality certificate (summary of single tests)

At GSI site:

- Site Acceptance Test (SAT)
 - √ documents control
 - √ quality controls
 - ✓ functionality tests @ 300K(after delivery, after cold tests)
 - ✓ functionality tests @ 4.5K
 (including magnetic field measurements (DC, AC mode))

SIS100 Dipole Magnets: Testing Strategy

Site Acceptance Test (SAT): Scope

Quality assurance (including safety)

- Yoke geometry
 - √ aperture height (precise)
 - ✓ sag and twist
 - ✓ positioning
- Process lines
 - ✓ pressure and leak
 - ✓ massflow rate
 - ✓ positioning
- Instrumentation check
- Electrical integrity
 - ✓ HV
 - ✓ continuity
 - √ turn-to-turn insulation
- Quench performance
- Static heat load and AC losses

Machine control

- Integral B-field
- Harmonics
- Load line

For each dipole magnet:

- About 30 parameters to control
- Approx. 110 steps to follow
- Duration ~ 3 weeks

GSI Test Facilities for SIS100 Magnet Testing

Series Test Facility (STF)

- Cryo-plant 1.5 kW commissioned Q2/2015
- Power converters 2 x 20 kA (66 V) –
 commissioned Q1 & Q3/2016
- 14 kA DC HTS Current Leads (CL) commissioning Q3/2015 – Q1/2017
- QD / Magnet protection system
- 687m² total area
- 4 test benches for cold tests
- 6 preparation benches
- Calibration chain for MF-probe

Full readiness for operation August 2017

1 - End box, 2 - Feed box, 3 - Distribution box, 4 - Power switch, 5 - Preparation bench

Testing Measurement Systems

High precision gap height measurent system

- 6 capacitive sensors CSH1,2FL(20)-CRm 4,0 from Micro - Epsilon GmbH& Co.KG
- Linear encoder WDS-100-P 115-CR from Micro-Epsilon GmbH& Co for reproducible positioning of the carriage along the magnet

Absolute precision 15µm

@ 300K

Relative precision < ± 3µm

In combination with a laser tracker, the system provides data regarding the yoke's sag and twist.

- 1 Carriage, 2 Capacitive sensors, 3 Wheels,
- 4 Holder for spherically mounted retroreflectors.

Testing Measurement Systems

Magnetic field measurent system

The measuring probe is designed and built in collaboration with CERN

- 5 measuring heads tangential coils
- 3 pick up coils per head, 600 mm length
- Effective surface 1.67 m²
- Ti-alloy bellows interconnection between segments and to align the heads along the beam axis
- SiN ball bearings for rotation motion
- Ceramic supporting blocks for transverse positioning in the gap

Field measurements in vacuum @ 4.5K

Test Results for the SIS100 Dipoles: Training

■ DP001 × DP002 * DP003 • DP004 + DP005 - DP006 - DP007 • DP008 ■ DP009 ■ DP010 × DP011 * DP012 • DP013 + DP014 - DP015 - DP016 • DP017 • DP018 ■ DP019 ■ DP020 ■ DP026 × DP027 * DP036 • DP037 + DP043 - DP044 - DP045 • DP046 • DP047 ■ DP048 ■ DP049 × DP050 × DP051 • DP052 ■ DP053 - DP054 - DP057 • DP058 ■ DP059 ■ DP060 × DP061 × DP062 ■ DP063 + DP064 - DP065 - DP066 ■ DP067 ■ DP068

DP069 × DP070 • DP071 + DP072

DP073 - DP074

Specifications:

- nominal current (nc) to be reached:
 - at 3rd quench in first cycle
 - at 1st quench in further
- de-training limited to 5 % of nc (compared to previous quench)
- quench current has to stabilize at 110 % of nc at least (14.5 kA)

53 magnets tested @ cold

Outstanding quench performance!

- ✓ nom. current reached at 2nd quench at least
- ✓ no significant de-trainig observed

Training close to the short sample limit of the cable (17.8 kA)

high stability of the coil structure in the yoke

Test Results for the SIS100 Dipoles: Gap Geometry

Test Results for the SIS100 Dipoles: Magnetic Field

Integral field

acceptance criteria for SIS100:

$$\Delta BL/BL \le 4 \times 10^{-3}$$
 with $BL = \int B(l)dl$

measured on 53 magnets: $\Delta BL/BL = 2.3 \times 10^{-4}$

Field homogeneity

acceptance criteria:

$$\sum_{n} C_n/B_1 < \pm 6 \text{ units } @ R_{ref} = 30 \text{mm}$$

measured on 53 magnets:

- magnet data acceptable for synchrotron operation
- ✓ good agreement with expectation except:
 - b_3 systematic \rightarrow correctable
 - a₂ under investigation

High reproducibility

$$\boldsymbol{B}(z=x+iy) = \sum_{n} \boldsymbol{C}_{n} \left(\frac{z}{R_{\text{rof}}}\right)^{n-1} \text{ with } \boldsymbol{C}_{n} = B_{n} + iA_{n}$$

Test Status for the SIS100 Dipoles

- The measurement results reveal an excellent performance of the chosen design and high production quality.
- The magnetic field shows very low variation in terms of the field integral and the low harmonic content is satisfactory for the beam physics requirements.
- Quench performance verifies a high stability of the coil structure in the yoke.

Dipole magnets delivered	Dipole magnets tested
62	58

Summary & Outlook

- The series production of the SIS 100 dipole magnets started in August 2016.
- The first series dipole was delivered to GSI at the end of September 2017.
- Quality control and functionality tests at contractor and GSI site are defined.
- High precision measurement systems were developed for magnet evaluation.
- Excellent performance of the chosen design and high production quality.
- More than 50% of the series dipoles successfully tested.
- Dipole series production is ongoing with a delivery rate of approx. one magnet per week.
- Next challenges for magnet testing are the FoS quadrupole module and magnet string tests.

SAT Team

- Test coordinators
- Survey & alignment
- Electrical integrity
- Field measurement
- Quench detection

- Cryoplant operators
- Transport and installation
- Quality assurance
- · DAQ, control and software

GSI departments

SCM, QA, TRI, CRY, EN-MG, EPS, VAC, BB, RHV Support on demand – MEWE, KB, ENG

Thank you for your attention