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Introduction

• Development of an electromagnetic model

for the 32 T all-superconducting magnet

(NHMFL, Florida).

• The magnet consists of a 17 T HTS insert

and a 15 T LTS outsert.

• The current density and the hysteresis

losses are estimated in the HTS insert.

• The LTS outsert is modeled as 5 concentric

coils in which uniform current densities are

impressed .
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Figure 1.
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20560 REBCO turns
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The Challenge - The Strategies
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• The well-known H formulation (FEM), proposed by Brambilla et al. [1], requires a huge amount of

computational resources.

• The Minimum Electromagnetic Entropy Production (MEMEP) method, proposed by Pardo [2], has been

applied to stacks having up to 40,000 turns.

• The homogenization together with the H formulation, proposed by Zermeño et al. [3].

• Smaller size prototype coils of the 32 T magnet, proposed by Xia et al. [4].

• Inner coil (coil 1) of the HTS insert 32 T magnet, proposed by Xia et al. [5].

• The Iterative multi-scale method together with the H formulation, proposed by Berrospe et al. [6]

• Full HTS insert model of the 32 T magnet without the LTS outsert, proposed by Berrospe et al. [7].

• The T-A formulation (FEM), proposed by Zhang et al. [8] and Liang et al. [9].
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computational resources.

• The Minimum Electro-Magnetic Entropy Production (MEMEP) method, proposed by Pardo [2], has been

applied to stacks having up to 40,000 turns.

• The homogenization together with the H formulation, proposed by Zermeño et al. [3].

• Smaller size prototype coils of the 32 T magnet, proposed by Xia et al. [4].

• Inner coil (coil 1) of the HTS insert 32 T magnet, proposed by Xia et al. [5].

• The Iterative multi-scale method together with the H formulation, proposed by Berrospe et al. [6]

• Full HTS insert model of the 32 T magnet without the LTS outsert, proposed by Berrospe et al. [7].

• The T-A formulation (FEM), proposed by Zhang et al. [8] and Liang et al. [9].

• The homogenization together with the T-A formulation proposed by Berrospe et al. [10].

• Full HTS insert model of the 32 T magnet without the LTS outsert, presented here.
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• The T-A formulation combines the T and A formulations.

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

T-AFormulation



9

• The T-A formulation combines the T and the A formulations.

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝛻 × 𝐇 = 𝐉 𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡

T-AFormulation



10

• The T-A formulation combines the T and the A formulations.

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝛻 × 𝐇 = 𝐉

𝐁 = 𝜇𝐇

𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡

𝜌𝐉 = 𝐄

T-AFormulation



11

• The T-A formulation combines the T and the A formulations.

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝛻 × 𝐇 = 𝐉

𝐁 = 𝜇𝐇

𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡

𝜌𝐉 = 𝐄

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

T-AFormulation



12

• The T-A formulation combines the T and the A formulations.

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

𝛻 × 𝐇 = 𝐉

𝐁 = 𝜇𝐇

𝛻 × 𝛻 × 𝐀 = 𝜇𝐉

𝛻 × 𝐄 = −
𝜕(𝐁)

𝜕𝑡

𝜌𝐉 = 𝐄

𝛻 × 𝜌𝛻 × 𝐓 = −
𝜕(𝐁)

𝜕𝑡

𝐁 = 𝛻 × 𝐀 𝐉 = 𝛻 × 𝐓

T-AFormulation



13

• The T-A formulation combines the T and the A formulations.

• A is defined all over the bounded universe, while T is exclusively

defined along the superconducting medium.
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• A is defined all over the bounded universe, while T is exclusively

defined along the superconducting medium.

• The superconducting layer of the tapes are modeled as one

dimensional (1D) objects.

• The transport current is impressed by means of the boundary

conditions for T.

• The surface current density K appears in the A formulation as a

Neumann boundary condition.

𝐼 = (𝑇1 − 𝑇2)𝛿

Figure 2.

T-AFormulation
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• The homogenization tranforms a HTS tapes stack into an

anisotropic bulk.

T-AHomogeneous

Figure 3.
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• Small examples of the code are available on-line. http://www.htsmodelling.com/

T-AHomogeneous

http://www.htsmodelling.com/
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Figure 1.

32 T Magnet  -T-AHomogeneous Model
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32 T Magnet  -T-AHomogeneous Model

Figure 1.

Figure 4.
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32 T Magnet  -T-AHomogeneous Model

Figure 4.

• Pover-law model

• Kim-like model

• The LTS outsert is modeled as 5

coils with uniform current

densities.

REBCO characteristics
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• Both insert and outsert are charged, considering a real charge cycle.

32 T Magnet  -T-AHomogeneous Model

Figure 5.
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Figure 6. Magnetic field magnitude at peak current.

• Both insert and outsert are charged, considering a real charge cycle.

32 T Magnet  -T-AHomogeneous Model

Figure 5.
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Figure 7. J at peak current in the last iterations. 

32 T Magnet  -T-AHomogeneous Model

Figure 6. Magnetic field magnitude at peak current.
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Figure 7. J at peak current in the last iterations. 

32 T Magnet  -T-AHomogeneous Model

Figure 8. Screening Current Induced Field Loop. 

The J distribution is used to compute the stresses,

Kolb-Bond et al. Mon-Af-Po1.11-05: Stress analysis of

the 32 T superconducting magnet at the MagLab

including screening current effects [11].
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Figure 9. Instantaneous losses and charge cycle

Figure 10. Losses in selected pancakes

32 T Magnet  -T-AHomogeneous Model
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Figure 9. Instantaneous losses and charge cycle

Figure 10. Losses in selected pancakes

32 T Magnet  -T-AHomogeneous Model

Computation time

• Multi-scale 19 days (without the LTS outsert field).

• Homogeneous 4 h 15 min.
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Thank you very much!
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