

Challenges of Superconducting Magnet System and Development of TF Prototype coil of CFETR

Jinxing Zheng, Xufeng Liu, Guang Shen, Kun Lu,
Yuntao Song, Jiangang Li, Chao Fang
jxzheng@ipp.ac.cn
Institute of Plasma Physics, Chinese Academy of Sciences

2019-9-23

China MCF Roadmap

Key Points of CFETR Mission

- 1. P = 200-1500MW
- 2. Q = 1-10, SSO, hours
- 3. Q = 20-30 hours-SSO
- 4. High energetic α heating

Steady-state operation for fusion energy

- 5. Hybrid (OH+BS+CD)
- 6. SSO (Ext H&CD + Higher f_b)
- 7. PSI on the first wall
- 8. Heat & particle exhaust on Div.

Breeding tritium for T self-sustained

- 9. T-breeding by blanket
- 10. T-plant: extract & reprocessing
- 11. Materials & components
- 12. Reliable and quick RH
- 13. Licensing & safety

CFETR Engineering Design

Maintenance and replacement for internal components, NBI, RF antennas, diagnostics, etc.

Blankets, interface between pipe and Blanket, Water cooled breeder blankets, Helium cooled breeder blanket, divertor, etc

Key issues for CFETR

☐ Larger size: R= 7.2 m, a=2.2m

 \square High $B_T : 6.5 T$

☐ Low Ip: 10-15MA

- **□** Advanced CS magnet: ≥ 480 VS
- ☐ Elongation 2; Triangularity 0.8
- **□** Lower Single Null

The requirements of CFETR Magnet system

- ◆ The magnet system of CFETR consists of 16 TF coils,
 8 CS coils;
- ◆ PF coils divided into three types according to the type of divertor:ITER-like: 6 PF coils; Snowflake: 7 PF coils;
- ♦ All of the coils have superconducting structure: the TF and CS
 - coils intend to use High Tc Nb3Sn superconductor, while PF and CC coils are suggested to make by NbTi/Nb3Sn superconductor.

Main parameters of CFETR

Major radius of plasma	R=7.2m				
v 1					
Minor radius of plasma	r= 2.2 m				
Central magnetic field	Bt = 6.5 T				
Duty cycle (or burning time)	~(30-50%)				
Thickness of blanket	1.0 m				
Magnetic field ripple in the region	<0.5%				
of Plasma					
Tritium must be self-sufficiency by blanket					

Toroidal field SC Magnet system

Conductor layout and jacket optimization

Option 1:

Full same Nb₃Sn conductor

Cross-section of jacket is 64x64mm, conductor R=24mm 8 double pancakes, 152 turns totally

96.8kA, 14.8 T

Just one types of Nb3Sn conductor

Advantages: easier for winding work and joint and helium

inlet/outlet

Disadvantages: High cost of the High-Tc Nb3Sn materials

High B region

Option 2:

Hybrid magnets (with same operation current/turn)

- 1. Cross-section of jacket is 64x64mm, conductor R=18mm Low B region
- 1. Cross-section of jacket is 64x64mm, conductor R=20mm Middle B region
- 2. Cross-section of jacket is 64x64mm, conductor R=24mm High B region 95.6kA, 14.43T

Disadvantages: Difficulty for winding work and joint and helium inlet/outlet

Conductor layout and jacket optimization

□ The thickness of jacket is 8mm(the thinnest position), turn insulation thickness is 1.5mm (a single conductor), layer insulation is 1mm, pancake insulation is 1mm, double-pancake insulation is 3mm, ground insulation is 8mm;

Key Parameters

	ITER TF	EU- DEMO ^[2015]	CFETR TF	CFETR TF (Option 1)	CFETR TF (Option 2-2)
No. of Coil	18	18	16	16	16
Operation current	68 kA	81.7 kA	87.6 kA	96.8 kA	95.6 kA
Inductance	17.34 H	32.68 H	34.93 H	25.8H	26.742H
Total storage energy	40.1 GJ	109.08 GJ	134.02 GJ	135.3GJ	136.37GJ
storage energy(single coil)	2.227 GJ	6.06 GJ	8.376 GJ	8.45 GJ	8.52GJ
Discharge time constant	11 s	23s	20 s		17 s
Quench protection resistance	_	-	$109.1 \mathrm{m}\Omega$		98mΩ
Maximum voltage	5954 V	6450 V	9562 V		9.37 kV

Key Parameters

Parameters	Option 1	Option 2
No. of coils	16	16
Total turns	152	154
Total storage energy	135 G J	136. 37GJ
Operation current	96. 8kA	95. 6kA
Maximum B	14. 73T	14. 43T
Overturning moment	1081.8 MN.m	1070 MN. m
Centripetal force	1132.6 MN	1158 MN
Weight of Coil	250.5 T	249.73 T
Weight of Coil case	474.45 T	470.76 T

Electromagnetic analysis

Option 1: maximum field is 14.73T (including influence from all PF coils

Option 2: maximum field is 14.43T (including influence from all PF coils

Stability analysis of high performance Nb3Sn

Conductor Parameters:

SC strand No.: 900 Cu strand No.: 522

J_c @ 12 T, 4.2 K: > 2200 A/mm², J_c @ 15 T, 4.2 K: > 1000 A/mm²

OST or WST wire near future

- total helium mass flow rate of each TF coil will be 12g/s, initial of helium pressure is 5.0 10⁵Pa, strain of -0.70 %
- Energy stability margin will be about 1400 mJ/cc

Mechanical disturbance (Lp=0.1m, t=1ms)

Energy stability

electromagnetic disturbance (Lp=10m, t=100ms)

Disturbance duration (c)

1m, t=1ms)	OutletOutlet	
	© 0.4 - Inlet Outlet	
	Mass on 0.0	
0.5	0 1 2 3 4 5	_

Energy stability					ristui Dance C	iuranon (s)		
	margin	(mJ/cc)	0.001	0.005	0.01	0.05	0.1	0.5
	D: 4 1	0.1	1702	1839	1744	1611	1539	1916
	Disturbance length (m)	1	1894	1888	1761	1523	1489	1537
	length (m)	10	1723	1785	1839	1864	1788	2264

electromagnetic disturbance (Lp=10m, t=100ms

Structure analysis of conductor jacket and case

Linearized stress: Pm=359MPa<533MPa; Pm+Pb=583MPa<800MPa, Jacket meets the allowable stress requirements.

Linearized stress: Pm=415MPa<533MPa; Pm+Pb=679MPa<800MPa

Shear stress of ground insulation

(1) Option 1-Shear stress of ground insulation

Max: 33MPa, YZ direction

Shear stress of ground insulation

(2) Option 2-Shear stress of ground insulation

Max: 32.4 MPa, YZ direction

Cooling down deformation

Fabrication Design Challenge

Low field WP

Medium field WP

High field WP

Winding Characters

- 1. One-in-hand winding
- 2. Short unit conductor length for pattern
- 3. Counter-clockwise winding
- 4. "Wind & React" approach
- 5. Narrow gap between patterns (10mm)
- 6. Pattern connected by internal joints

Pattern A	Pattern B	4	Pattern C
-----------	-----------	---	-----------

	Pattern A	Pattern B	Pattern C
Conductor Unit Length	840m	895m/450m	775m/515m
Sub-total Length	840*2= 1680m	895*3+450= 3135m	775*2+515= 2065m

Fabrication Design Challenge

Challenge for TF coils

ITER TF	EU- DEMO ^[2015]	CFETR TF	CFETR TF (Option 1)	CFETR TF (Option 2)
18	18	16	16	16
68 kA	81.7 kA	87.6 kA	96.8 kA	95.6 kA
17.34 H	32.68 H	34.93 H	25.8H	26.742H
40.1 GJ	109.08 GJ	134.02 GJ	135.3GJ	136.37GJ
2.227 GJ	6.06 GJ	8.376 GJ	8.45 GJ	8.52GJ

- **Overturning moment > 1070MN.m**
- **Centripetal force > 1130MN**
- **B**_{max} ~14.3T~14.7 T
- Maximum stress > 700MPa
- $I_{op} > 95kA$
- **Total energy storage > 135GJ**
- Total weight > 500 t/coil

Time: 1

63.789 55.815

47.842 39.868

31.894

23.921

15.947

7.9736

- Shear stress of insulation < 50MPa
- **Cooling down deformation > 70mm**

Why we need a compact CS coil

Outer radius: 2.3m→2.05m

Voltage Second: 480V·s→400V·s

Extra 0.25m for blanket

Magnet System (Central Solenoid)

 \square CS conductor: 480V.s, $I_{op} > 60kA$, B_{max}>17T, High Jc Nb₃Sn or HTS

One CS coil~7.6 km One CS coil~2 GJ

Dimeter: 4.28 m

- **High temperature superconductor** (Bi2212/YBCO) + low temperature superconductor (Nb₃Sn) → a maximum 19.9 T@ 51.25 kA/turn.
- Maximum 480 VS flux

Magnet System (Central Solenoid)

CS conductor ($B_{max} > 17T$, option 2 HTS)

Bi-2212 and YBCO:

- □ brittle or not, easily to be damaged during cabling and conductor manufacturing;
- \square Need or not: special heat treatment-with O_2 , high temperature, and high pressure.

Plasma equilibrium configuration for CFETR

	PF1U & PF1L	PF3U	PF2U,2L,3L & DC1
Ic [A]	57.77 [6T, 6K]	125.44[5T,6K]	204.25[4T,6K]
lop [A]	41.6	74.04	111.11
Number of strands	1440	810	540
Cable Pattern	3x4x4x5x6	3x3x3x5x6	2x3x3x5x6
Ni coated strand diameter [mm]	0.73	0.73	0.73
Cu-to-Non-Cu ratio	1.6	2.3	2.3
Operating temperature K	4.5	4.5	4.5
Calculated Tcs K	6.07	6.3	6.56
Calculated Min. Temperature margin K	1.77	1.8	2.06

	I _{op} (kA)	Quench Voltage (kV)	time constant(s)	Discharge resistance(Ω)
PF1	53.9	14	7.89	0.26
PF2	-17.9	1.2	5.67	0.07
PF3	-36.1	9	12.39	0.25
PF4	-17.2	2.4	6.32	0.14
PF5	-40.1	11	10.83	0.27
PF6	35.3	3.1	13.21	0.09
PF7	55.4	15	7.57	0.27

Coil	SN	SF+	
Con	B _{max} /T		
PF1U	5.2318	4.9051	
PF2U	0.84155	0.85487	
PF3U	3.8982	4.3090	
PF1L	5.5761	4.4089	
PF2L	1.4326	4.2372	
PF3L	2.4204	0.6777	
DC1	1.4498	4.4638	

ITER PF6 coil is just finished its manufacturing in ASIPP

Summary

- □ Integrated Design and R&D of magnet system of CFETR are in progress. CFETR is under design with emphasis for high B_T option
- \square There are gaps to CFETR SC magnet, especially for high B_T option, need **new solution** and technologies.
- □ Detail engineering design and large scale R&D of superconducting magnet system will continue in next 5 years. We are looking forward to broad international cooperation.

We are grateful to the help and discussion from WST, OST, Tsinghua University, Shanghai Superconductor Ltd., ENEA, NIFS, QST ...

