

Power Tests of the First Nested Orbit Corrector Prototype for HL-LHC

J. A. García-Matos, J. Calero, M. Domínguez, A. Fernández, P. Gómez, L. García-Tabarés, D. López, L. M. Martínez, T. Martínez, J. Munilla, J. A. Pardo, J. M. Pérez, P. Sobrino, F. Toral (CIEMAT)

M. Bajko, S. Emami, L. Fiscarelli, M. Guinchard, S. Izquierdo Bermúdez, F. J. Mangiarotti, J.C. Perez, E. Todesco, G. Willering (CERN)

Index

- Introduction
- First power test
- Second power test
- Third power test
- Fourth power test
- Conclusions

Orbit correctors for HL-LHC

- Three MCBXF orbit correctors will be installed at each side of the interaction point in the LHC upgrade.
- Same cross section: type A is 2.5 m long while type B is 1.5 m long.

Magnet and cable specifications

MCBXFB Technical specifications Combined dipole **Magnet configuration** (Operation in X-Y square) Integrated field 2.5 Tm Minimum free aperture 150 mm Nominal current < 2500 A Radiation resistance 35 MGy Physical length < 1.505 m **Working temperature** 1.9 K MQXF iron holes Iron geometry Field quality < 10 units (1E-4) Fringe field < 40 mT (Out of the Cryostat)

Vertical dipole field (2.1 T)	Combined dipole field (Variable orientation)
	Horizontal dipole field (2.1 T)

Cable Parameters						
No. of strands	18					
Strand diameter	0.48 mm					
Cable thickness	0.845 mm					
Cable width	4.37 mm					
Key-stone angle	0.67°					
Cu:Sc	1.75					

Same nominal torque than 140 Porsche Taycan Turbo S

MCBXFB magnetic design

Parameter	Inner dipole	Outer dipole	Units
Nominal individual field	2.14	2.26	T
Nominal combined field	3.12	3.12	T
Aperture diameter	156.2	230	mm
Nominal current	1625	1474	A
Ultimate current	1755	1592	A
Differential self- inductance	58.5	124.8	mΗ
Magnetic energy	76.8	143.2	kJ
b3	<15	<15	units
Higher multipoles	<5	<5	units
Number of turns	140	191	
Cable length	360	487	m

- Innovative coil fabrication techniques due to the high number of turns:
 - Insulated NbTi Rutherford cable with braided glass fibre
 - Each layer is fixed with a binder after winding
 - Coils are fully impregnated with epoxy resin CTD 101-K
- In order to validate the coil fabrication techniques, it was decided to test the magnet without the outer dipole coils which were still under fabrication.

Inner dipole assembly (I)

- The assembly techniques of the final magnet were also validated.
- The first collaring attempt failed because excessive friction between the collaring shoes. It was solved by spraying Molykote D-631.
- Several shimming steps to reach the right preload, checked with collar strain gauges and Fujifilm Prescale paper. Coils were below nominal dimensions.
- The preload loss due to spring-back was too high: from 100 MPa under the press down to 50 instead of computed 70 MPa.
- Still under investigation, but likely due to the excessive play of the pin holes.

Inner dipole assembly (II)

- The outer dipole was replaced by 316 L stainless steel spacers.
- Axial preload was 6 kN per pusher (four per coil).
- Endplates hold the coil axial preload and compress the iron laminations.

Inner dipole power test

- Inner dipole reached ultimate current without any quench.
- Coils lost azimuthal preload.
 The assumed thermal contraction coefficient was too low (3.5 per mil) . By comparison with MQXF coils, it was recomputed as 4.7 per mil: additional shims of 150 microns.
- Field quality: b3 of 22.2 units instead of 9.2 units because of shimming. Higher order multipoles below 5 units.

400 signals for strain gauges/ 200 for V taps

Second power test

The **inner dipole** was powered till ultimate current without quench. Azimuthal preload lower than expected.

- The outer dipole experienced a slower training:
 - First quench at 1006 A
 - 7 quenches till reaching nominal current.
 - 4 quenches more till reaching ultimate current.
- Combined powering with limited torque performance. Quenches at midplane cable block, inner dipole coils.
- After thermal cycle, with reduced axial preload for diagnosis, the performance was worse.
- Decision: to increase the friction at the coil ends and inner dipole azimuthal preload.

Third power test

- Both dipole coils were properly preloaded.
- No significant improvement:
 - Inner dipole reached ultimate current without quench.
 - Outer dipole reached ultimate current with 3 quenches above nominal one.
 - Combined operation performed with 8% more torque.
- During the thermal cycle, the axial preload was increased without effect.
- What to do now? Do we refurbish the magnet?

Magnet performance limited by torque (I)

Magnet performance limited by torque (II)

- All the measurements can be explained by this gap at mid-plane:
 - The gap closes during individual training, but keeps open in combined one.
 - Quench starts always at coil ends: no difference between both ends.
 - Quench starts at mid-plane block, inner layer: the lowest field, but the cables are the first to slide.
 - Quench current is very repetitive:
 - Not training, mechanical limitation.
 - Sliding between the coil outer diameter and the ground insulation, very smooth surface.
 - Magnet performance does not improve with higher coefficient of friction at coil ends or axial preload.
 - Magnet performance slightly improved with higher azimuthal preload at inner dipole coils.

Magnet performance limited by torque (III)

It was decided to assemble the magnet with a new shimming configuration:

Tost	Inn	er dipole	Oute	r dipole
Test -	Pole	Mid-plane	Pole	Mid-plane
1	450	0	N/A	N/A
2	600	0	875	250
3	800	0	875	250
4	225	575	250	875

Fourth power test (I)

- It reached nominal torque after training in both directions!
- No memory: it needs training each time that the torque is reversed.

Fourth power test (II)

- The magnet can operate in a "safe" zone without quench, and in the full zone with training.
- Field quality is under control.
- No memory: same behaviour after the thermal cycle.

Conclusion

- The first power test (w/o outer dipole) allowed to validate the innovative coil fabrication techniques.
- Three power tests were necessary to reach nominal torque at combined operation.
- Few training quenches are needed to reach again nominal operation current when the torque is reversed.
- The first prototype reaches performance on 80% of required operational range.
- Additional shimming will be added at the coil ends in the ongoing second prototype.

Acknowledgements to:

927 and SM18 teams at CERN

Companies involved in the magnet and tooling fabrication: APM, Apteca, Aratz, Bronymec, Egile, Focs, GAZC, Utillajes Jucar, Klero, Ramem and Teknicalde

Thank you for your attention!

Inner dipole coil

Inner dipole coil

