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Orbit correctors for HL-LHC
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 Three MCBXF orbit correctors will be installed at each side of the 

interaction point in the LHC upgrade.

 Same cross section: type A is 2.5 m long while type B is 1.5 m long.



Magnet and cable specifications

MCBXFB Technical specifications

Magnet configuration
Combined dipole

(Operation in X-Y square)

Integrated field 2.5 Tm

Minimum free aperture 150 mm

Nominal current < 2500 A

Radiation resistance  35 MGy

Physical length < 1.505 m

Working temperature 1.9 K

Iron geometry MQXF iron holes

Field quality < 10 units (1E-4) 

Fringe field < 40 mT (Out of the Cryostat)

Cable Parameters

No. of strands 18

Strand diameter 0.48 mm 

Cable thickness 0.845 mm

Cable width 4.37 mm

Key-stone angle 0.67º

Cu:Sc 1.75
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Same nominal torque than 140 

Porsche Taycan Turbo S



MCBXFB magnetic design
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Parameter  Inner dipole Outer dipole Units 

Nominal individual field 2.14 2.26 T 
Nominal combined field 3.12 3.12 T 

Aperture diameter 156.2 230 mm 
Nominal current 1625 1474 A 
Ultimate current 1755 1592 A 

Differential self- inductance 58.5 124.8 mH 
Magnetic energy 76.8 143.2 kJ 

|b3| <15 <15 units 
Higher multipoles <5 <5 units 
Number of turns 140 191  

Cable length 360 487 m 

 

 Innovative coil fabrication techniques due to the high number of turns: 
 Insulated NbTi Rutherford cable with braided glass fibre

 Each layer is fixed with a binder after winding

 Coils are fully impregnated with epoxy resin CTD 101-K

 In order to validate the coil fabrication techniques, it was decided to test the 

magnet without the outer dipole coils which were still under fabrication. 



Inner dipole assembly (I)

 The assembly techniques of the final magnet were 

also validated.

 The first collaring attempt failed because excessive 

friction between the collaring shoes. It was solved by 

spraying Molykote D-631.

 Several shimming steps to reach the right preload, 

checked with collar strain gauges and Fujifilm Prescale

paper. Coils were below nominal dimensions.

 The preload loss due to spring-back was too high: from 

100 MPa under the press down to 50 instead of 

computed 70 MPa.

 Still under investigation, but likely due to the excessive 

play of the pin holes. 
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Inner dipole assembly (II)

 The outer dipole was replaced by 316 L stainless 

steel spacers.

 Axial preload was 6 kN per pusher (four per 

coil).

 Endplates hold the coil axial preload and 

compress the iron laminations.
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Inner dipole power test
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400 signals for strain

gauges/ 200 for V taps

 Inner dipole reached ultimate

current without any quench.

 Coils lost azimuthal preload. 

The assumed thermal 

contraction coefficient was 

too low (3.5 per mil) . By 

comparison with MQXF coils, it 

was recomputed as 4.7 per mil: 

additional shims of 150 microns.

 Field quality: b3 of 22.2 units 

instead of 9.2 units because of 

shimming. Higher order 

multipoles below 5 units.



Second power test
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 The inner dipole was powered till ultimate 

current without quench. Azimuthal preload 

lower than expected.

 The outer dipole experienced a slower 

training:

 First quench at 1006 A

 7 quenches till reaching nominal current.

 4 quenches more till reaching ultimate current.

 Combined powering with limited torque 

performance. Quenches at midplane cable 

block, inner dipole coils.

 After thermal cycle, with reduced axial preload 

for diagnosis, the performance was worse.

 Decision: to increase the friction at the coil 

ends and inner dipole azimuthal preload.



Third power test
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 Both dipole coils were properly preloaded.

 No significant improvement:
 Inner dipole reached ultimate current without quench.

 Outer dipole reached ultimate current with 3 quenches above nominal one.

 Combined operation performed with 8% more torque.

 During the thermal cycle, the axial preload was increased without effect.

 What to do now? Do we refurbish the magnet?



Magnet performance limited by torque (I)
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GAP GAP
Shimming during first 

three power tests

Outer collars locking



Magnet performance limited by torque (II)
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 All the measurements can be explained by this gap at mid-plane:

 The gap closes during individual training, but keeps open in combined one.

 Quench starts always at coil ends: no difference between both ends.

 Quench starts at mid-plane block, inner layer: the lowest field, but the 

cables are the first to slide.

 Quench current is very repetitive: 
 Not training, mechanical limitation.

 Sliding between the coil outer diameter and the ground insulation, very smooth surface.

 Magnet performance does not improve with higher coefficient of friction at 

coil ends or axial preload.

 Magnet performance slightly improved with higher azimuthal preload at 

inner dipole coils.



Magnet performance limited by torque (III)
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 It was decided to assemble the magnet with a new shimming 

configuration:

Test  

Inner dipole Outer dipole 

Pole Mid-plane Pole Mid-plane 

1 450 0 N/A N/A 
2 600 0 875 250 
3 800 0 875 250 
4 225 575 250 875 

 



Fourth power test (I)
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 It reached nominal 

torque after training 

in both directions!

 No memory: it needs 

training each time that 

the torque is reversed.



Fourth power test (II)
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 The magnet can 

operate in a “safe” 

zone without quench, 

and in the full zone 

with training.

 Field quality is under 

control.

 No memory: same 

behaviour after the 

thermal cycle.



Conclusion
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 The first power test (w/o outer dipole) allowed to validate the innovative coil 

fabrication techniques. 

 Three power tests were necessary to reach nominal torque at combined 

operation. 

 Few training quenches are needed to reach again nominal operation current 

when the torque is reversed.

 The first prototype reaches performance on 80% of required operational 

range.

 Additional shimming will be added at the coil ends in the ongoing second 

prototype.



Acknowledgements to:

927 and SM18 teams at CERN

Companies involved in the magnet and tooling fabrication: 

APM, Apteca, Aratz, Bronymec, Egile, Focs, GAZC, Utillajes Jucar, 

Klero, Ramem and Teknicalde

Thank you for your attention!



18



Inner dipole coil
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Inner dipole coil
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ID coil end 201.6 mm

(w/o collar nose)

Cantilever 259.2 mm

(w/o collar key) 


