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Background
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Year 2 of 5 year programme: “Ultra-high speed superconducting machines 
for hybrid-electric aircraft”

A. New concept HTS machine designs including: AC Homopolar, induction 
and wound-rotor architectures.

• Design concepts completed.

• Selecting demonstration machines now

B. Novel subsystem components including: Flux pump exciters, HTS bearings, 
quench detection, and high-saturation-field soft ferromagnets.

C. Computational tools to model and predict superconducting AC loss in 
ultra-high speed HTS machines. 

D. Lab scale prototype HTS 10 kW motor operating at > 20,000 RPM.

• Planned for year 4/5
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Hybrid-Electric Aircraft
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https://www.wired.com/2013/07/eads-ethrust-hybrid-airliner/ Require frictionless non-contact magnetic bearings since mechanical 
bearings would not be able to operate continuously due to frictional losses 
and wear. 

Kalsi et al., Energies 12, 86 (2019)

Kalsi et al., AIAA 2019-4517
DOI: 10.2514/6.2019-4517

2 MW 25000 RPM Superconducting Homopolar Motor/Generator

Kalsi et al., CEC-ICMC 2019, M2Or4A-02

https://www.wired.com/2013/07/eads-ethrust-hybrid-airliner/
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Superconducting Magnetic Levitation

6

High-temperature
superconductor

Magnet

Liquid nitrogen

Passive stable levitation, but stiffness is low



Robinson Research InstituteRobinson Research Institute

Shaped Magnet and HTS Bulks
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N50 Nd-Fe-B
Conical frustum

Melt-processed YBa2Cu3O7-d
Toroid

Inner puck

(mm)

Aim:
To produce high stiffness coupled 
with high levitation force.

“Assembly”
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Measurement Test Rig
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Cryocooled measurements down to 42 K.
3-axis load cell ±500 N, 10 Hz acquisition rate.
Lateral (x) and vertical (z) displacement system, 0.5 mm/s.
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Measurement Test Rig
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Cryocooled measurements down to 42 K.
3-axis load cell ±500 N, 10 Hz acquisition rate.
Lateral (x) and vertical (z) displacement system, 0.5 mm/s.
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Finite Element Simulation
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|B| (T)

H-formulation method: 
Quéval et al., Supercond. Sci. Technol. 31, 084001 (2018) 

Non-linear resistivity
J: current density

Jc: critical current density
at Ec = 10-4 V/m

n: 21

Speed: 1 mm/s
Forces

2D Axisymmetric

3D

PM field (A-formulation)
applied as boundary condition
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Magnet Mapper
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3-axis Bz scanner
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Zero Field Cooled Axial Displacement
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Magnet Alignment & Homogeneity
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Inner puck makes no contribution to the assembly
x

z

Axial Force
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Field Cooled Axial Displacement
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x-Force y-Force z-Force
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Higher restoring force
More consistent stiffness

Simulated z-Force: Field-Cooled Axial Displacement

50 mm diameter HTS
25.4 mm diameter PM
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Up to 2 x restoring force

Fx (N)

50 mm diameter HTS
25.4 mm diameter PM

x

z

z = 5 mm
z = 1.3 mm

Simulation
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Up to 2 x restoring force
Up to 4 x stiffness

Simulated x-Force: Field-Cooled Lateral Displacement
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Kx (N/mm)

50 mm diameter HTS
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Summary

• For axial displacements, the assembly produces higher and 
more consistent stiffness, as well as stronger restoring forces.

• For lateral displacements, the assembly produces up to double 
the lateral force and up to four times the stiffness.

• The small inner puck contributes negligible force to the 
assembly and can be eliminated from the bearing design.

• Next step: high-speed (25000 RPM) dynamic studies 
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Come to New Zealand!
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Come to New Zealand!
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www.amn10.co.nz

http://www.amn10.co.nz/

