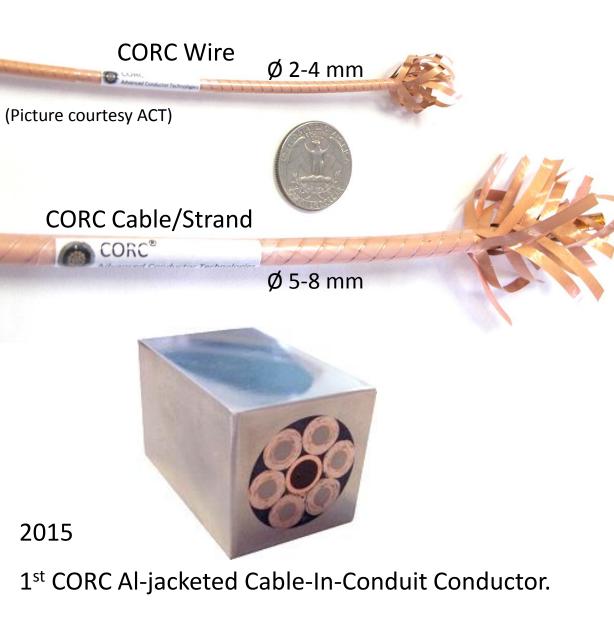
Development of ReBCO-CORC Cable-In-Conduit Conductors for Large-Scale Magnets


<u>Tim Mulder</u>, Jeremy Weiss, Danko van der Laan, Alexey Dudarev and Herman H. J. ten Kate

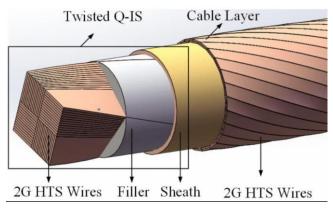
MT26, Vancouver, Canada-September 23, 2019

CORC Wires, Cables and Cable-In-Conduit Conductors

CORC:

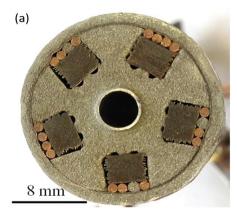
- High omni-directional flexibility.
- Round shape resilient towards transverse loads.
- Internal core stabilized.
- No tape lost during production.
- For compact high-field magnets and large magnets (detector and fusion) and bus bars.

<u>CORC Wire</u>: accelerator magnets, high-field insert coils or standalone solenoids.


CORC Cable: general purpose, stable SC magnets and power transmission.

<u>CORC Cable-In-Conduit Conductor (CICC):</u>
high current, high-field magnets and HTS bus bars.

ReBCO Cable-In-Conduit Conductors


- Superconducting Cable-In-Conduit Conductors (CICCs) are commonly designed for large-scale, highcurrent magnets such as used in experimental fusion reactors and particle detectors.
- NbTi and Nb₃Sn conductor development are close to their limits, and quest of higher temperature,
 and no-helium operation ---> ReBCO based CICCs to be developed!
- **ReBCO** based conductors offer a further increase in current density, stability and allows (optional) operation above liquid helium temperatures.

Examples of several ReBCO based CICCs are in development around the globe:

North China Electric Power University

Quasi-Isotropic Conductor

ENEA: Twisted Stacked Round CICC

Swiss Plasma Center: Twisted Stacked Rectangular CICC

CERN & ACT: CORC 6-a-1 CICC

Bus bars based on CORC CICC conductor, lighter, taking less space.

CORC Bus Lines:

- Reduce weight
- Reduce volume
- Reduce power converter requirements
- Allow power convertor placement on surface

CORC Magnets:

- Extremen thermal & electric stability
- Operation at 20 to 50 K
- Simpler cooling with helium gas
- Jacket material application dependent
- Steel for fusion, Aluminum for detectors.....
- Options for internal or external cooling

Detector cavern

CORC CICC Development Timeline

Advanced Conductor Technologies LLC
www.advancedconductor.com

Test of two CORC CICCs

- Stainless steel jacket + internal cooling
- Copper jacket + external conduction cooling

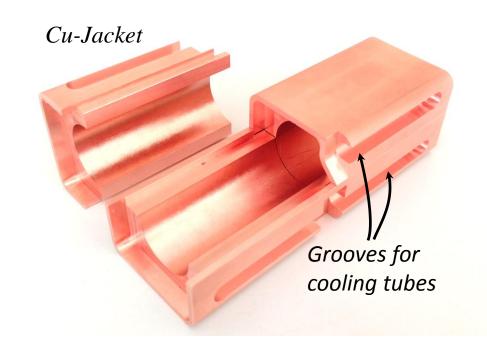
Test of new solderfilled CICC with copper jacket

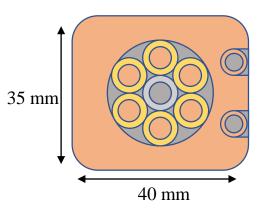
2019


2017

Test of 1st CICC with Aluminum jacket

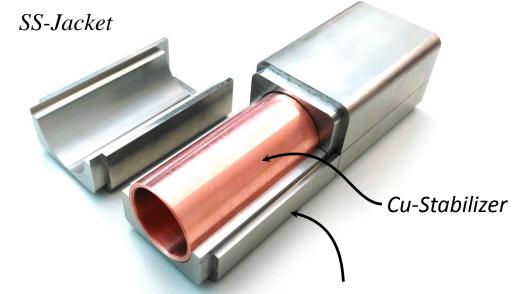
2018


Design & Preparation of new sample

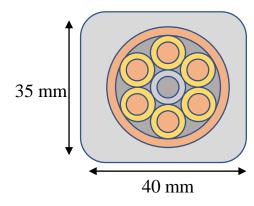


2020

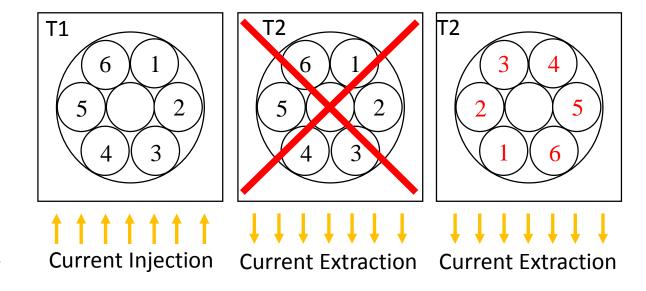
Testing new layouts of internally cooled CORC CICCs


CORC Cable-In-Conduit Conductor Design

Detector magnets & Bus Bars:


- High thermal & electrical stability
- Practical conduction cooling

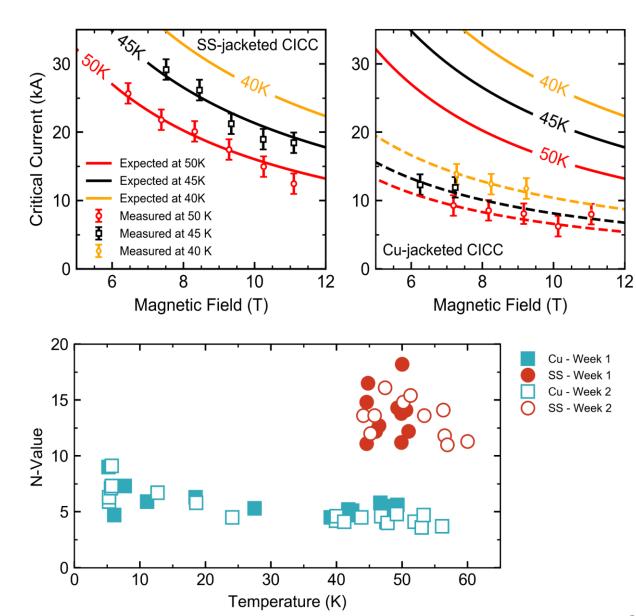
Jacket: Two half shells, locked & welded together


Fusion type magnets:

- Can sustains high stress
- Can cope with large heat loads
- Internal forced-flow cooling

CORC CICC - Joint terminal design

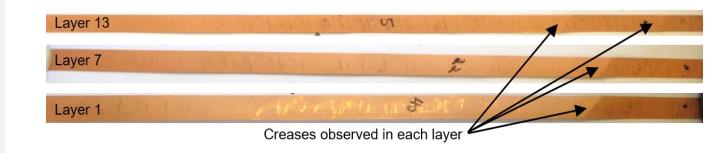
- Short sample current is distributed in terminals.
- Strands are tapered, allows current to flow evenly into each layer of each CORC strand.
- Strands are straight inside the terminal.
- Half a cable pitch difference between terminals improves current distribution among strands.
- Terminals filled with solder, SnPb or Indium (best).
- Design resistance of 0.6 n Ω m.


SS and Cu jacketed CORC CICC samples – test results

SS-jacketed CICC for Fusion Magnets:

- Performed according to prediction at 40 to 60 K
- N-value of 14 ± 3 (similar to the 2016 sample)
- Low AC-loss of 7 mJ/cycle/cm³

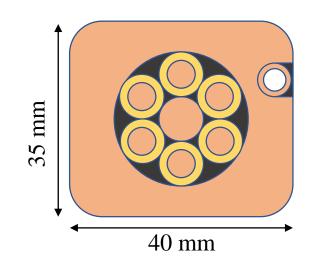
Cu-jacketed CICC for Detector Magnets & Bus Bars:


- Only 30 to 40 % of predicted I_c
- Low n-value of 5±2 in 40 to 60 K range
- Degradation occured only in the Cu-jacketed CICC.
- ✓ Both <u>conduction</u> and <u>forced-flow convection</u> cooling <u>proved valid</u> for such conductors.

2017 tested CORC CICC samples

Likely cause of the degradation:

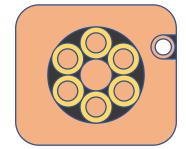
- Primary failure mode is a pinching effect.
- Specific for CORC strand layout/winding parameters of the Cu-jacketed CICC.
- ✓ Copper tapes layers around the core do not give sufficient mechanical support.

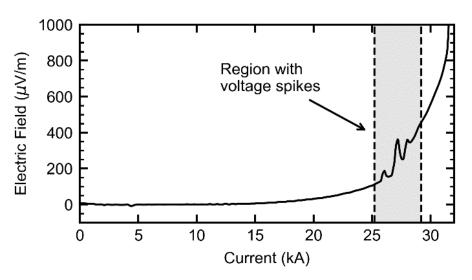

Points of Contact ReBCO tapes Pinching Deformation Smaller bending radius, higher strain

Next steps:

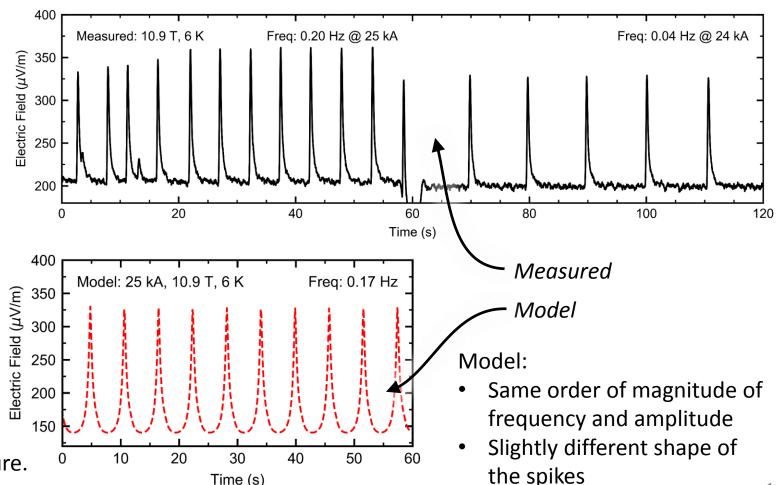
- New CICC to replace the degraded Cu-jacketed CICC.
- New strand layout is used with a thicker core.
- Mechanical support of CORC strands by <u>solder filling</u> of the voids between strands.

Latest CORC CICC Sample (2019)

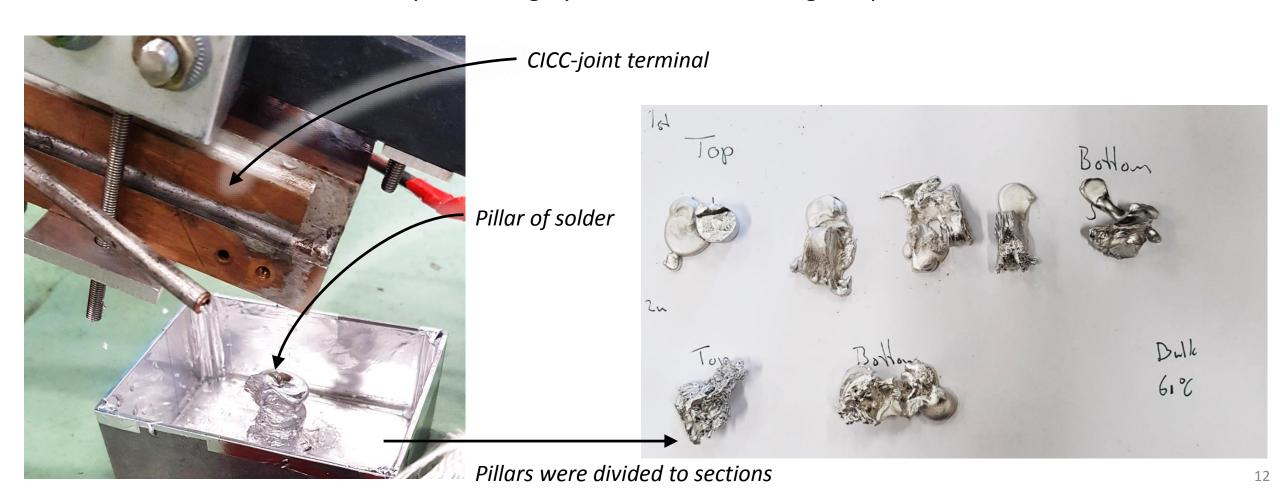

- Project in collaboration with ACT.
- Similar high-I_c tape layout in the CORC strands as in the previous sample.
- Solely cooled by conduction cooling via its jacket.
- Improved electrical and mechanical performance by solder filling of conduit.


	Trial (2016)	Fusion Sample (2017)	Detectors Sample (2017)	Detector Sample (2019)
Number of tapes	38	42	42	42
Number of layers	12	14	14	14
Таре Туре	SCS 4050	SCS 4050	SCS 4050	SCS 4050
Copper plating [µm]	40	10	10	10
Core material	Aluminum	Copper	Copper	Copper
Solid core diameter [mm]	4	5	4	<u>5</u>
Outer diameter [mm]	7.6	7.7	7.7	7.7
Critical Current (4K, 10T) [kA]	48	90	90	<u>100</u>

Unfortunately, odd current sharing seen, surprise


- Issues with the new sample that prevented accurate I_c measurements.
- Bad current distribution measured leading to oscillating sharing of current, likely resulting from solder alloying in the joint regions.

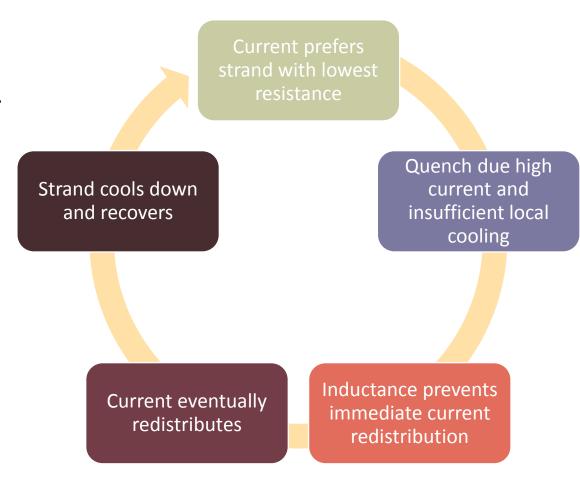
Voltage & temperature oscillations appear in a small current & temperature window.


- Seen only in this CICC, error!
- Spikes were reproducible.
- Frequency depends on current and temperature.

Time (s)

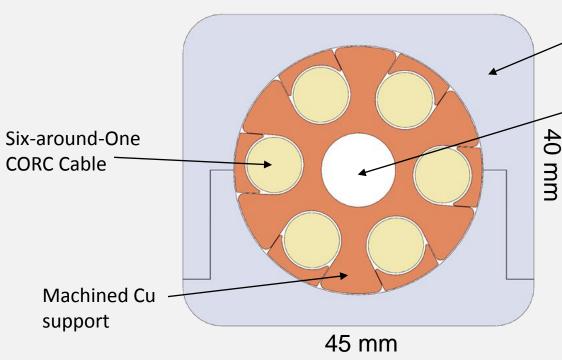
Test of solder metal of the joint terminals

- Solder was extracted from the extremities of the joint terminals.
- Test of the solder confirms suspicions: alloying throughout the entire terminal.
- Result is some In-Bi-Sn-Pb alloy with a highly non-eutectic melting temperature of 60 to 80 °C.


Odd behavior, what we learnt (2019)

What we know:

- Model is able to reproduce similar voltage spikes.
- Small window of parameters where such behavior occurs.
- Unique to HTS multi-strand conductors.
- Model & measurements suggest current distribution issue.
- No direct evidence of strand degradation.
- New joints may resolve the issue.

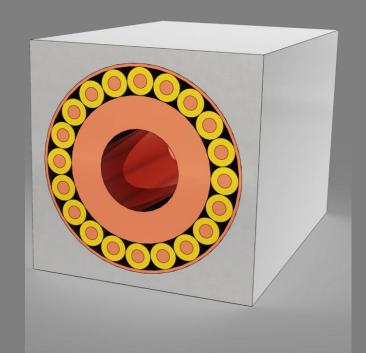

Next steps (already in progress):

- Extracting all solder from the sample. (✓ Done)
- Refilling the joint and sample with indium. (✓ This week)
- Test again in autumn 2019.

- **✓** Each measurement iteration increases our knowledge and experience of CORC CIC conductors.
- It is still a work in progress, more new CORC CICCs are in development.

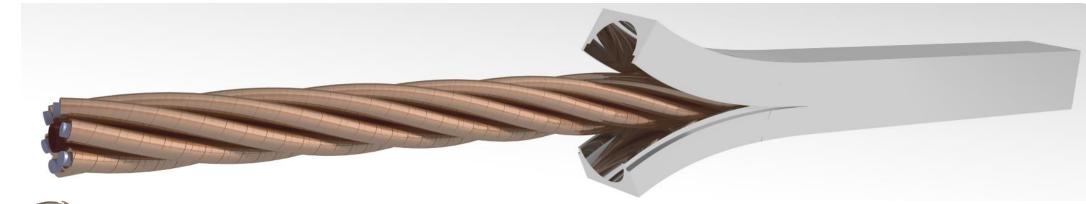
New CORC CICCs > 2020 and beyond

Next sample in preparation right now, mainly designed and prepared at ACT, instrumented and integrated at CERN and tested in Sultan early 2020.



Demountable Stainless Steel Jacket

Internal **Helium Gas** Cooling


Currently in design: X-around-1

- Thinner more flexible CORC strands.
- Shorter twist pitch.
- Internal gas cooling.
- More flexible CICC depending on jacket and core design.

Conclusion

- ✓ Research on CORC Cable-In-Conduit Conductors is ongoing in collaboration with ACT
- ✓ Each measurement iteration increases our knowledge and experience of CORC CICCs.
- ✓ Odd joint-introduced current sharing seen in last sample.
- ✓ Latest CICC is being refilled this week and will be tested in the coming month.
- ✓ Another few CICC variants to come, next version test early 2020, more in coming years.......

