

# Comparative studies of three-dimensional analysis and measurement for establishing pulse electromagnet design

T. Takayanagi\*, T. Ueno, K. Horino, A. Ono, K. Yamamoto and M. Kinsho J-PARC/JAEA, Tokyo, Japan





## Contents

- Introduction of the pulse electromagnet targeted for design called bump magnet.
- Flow of evaluating the establishment of a design method.
- Explanation of analysis method using the OPERA-2D and 3D.
- Explanation of magnetic field measurement method using various probes.
- Evaluation results
- Summary

Today, I will introduce only the main part. Please refer to my manuscript for details.

# Parameters of Bump magnet

The bump magnet is an important pulse electromagnet that generates high-intensity beams in J-PARC.

Table 1: Main parameters of bump magnet

| ltem                | Value                                   |  |
|---------------------|-----------------------------------------|--|
| Waveform            | Trapezoid(Pattern)                      |  |
| Excitation time     | 1.0~1.6ms(Controllable)                 |  |
| Maximum Output      | 16kA and 12kV                           |  |
| Repetition          | 25Hz                                    |  |
| BL Field uniformity | $\pm 1.0\%$ (Target value $\pm 0.5\%$ ) |  |





- High current, high voltage, fast repetition pulse excitation.
- Change the rise and fall times according to the required beam parameters.

## Motivation

### Establish a characteristic pulse magnet design method.



Fabricated bump magnet

Characteristic electromagnetic structure

A general structure cannot be adopted for the bump magnet that excites a high-speed pulse with a large current.

- Cooling pipe
  Interlayer insulation

  X Saddle-type coil

  Multilayer structure)
- Reduce the number of turns to a low inductance.
- Use a bus bar with good heat dissipation.

Evaluation of pulse eddy current and skin effect according to the bump specifications is required.

## Flow of evaluation and analysis

**2D analysis**For basic design

- Use OPERA-2D.
- Change the current area of the coil cross section.
- Check the differences in the current pass.

Static magnetic field

- Virtual skin effect
- Virtual drift current

**3D analysis**For final design

- Uses TOSCA and ELEKTRA of OPERA-3D.
- OPERA-3D has different coil conductor models.
- Check the differences in the models.

Dynamic magnetic field

- Biot-Savart conductor
- Meshed conductor

Final confirmation
Comparison with
experimental results

- High-precision measurement is required.
- Evaluate each instrument error.
- Check the differences in probe.

- Flux meter
- Hall prob
- Search coil

## 2D Analysis with OPERA-2D

Enter a virtual condition for pulse excitation because of the static magnetic field





■ The difference in the current pass of the coil cross section affects the magnetic field distribution.

Requires 3D dynamic magnetic field analysis

## Two coil conductor models of OPERA-3D

- TOSCA is a static magnetic field analysis. Use Biot-Savart conductor. Only DC analysis.
  - ELEKTRA is a dynamic magnetic field analysis. Use either Biot-Savart or meshed conductor.



**Biot-Savart conductor** 

- Expands Biot-Savart integration and calculates magnetic field from the conductor coil.
- Conductors independent of mesh and used for magnetic field analysis by DC and AC currents.



Meshed conductor

- The inside of the conductor coil is meshed and formed of cells.
- Conductors can be driven for high-speed pulse excitation, which is transient electromagnetic.

## 3D Analysis model with OPERA-3D

Perform analysis under five conditions using 3D model of core and coil of the same shape.



| Waveform    | Coil type   | Pattern condition                      |  |
|-------------|-------------|----------------------------------------|--|
| DC          | Biot-Savart | 2.4kA(Effective value of pattern 16kA) |  |
| Sine        | Biot-Savart | 2.4kA, 1kHz(Effective frequency)       |  |
| Pattern I   | Mesh        | 4kA, Rise time is 400us                |  |
| Pattern II  | Mesh        | 8kA, Rise time is 850us                |  |
| Pattern III | Mesh        | 16kA, Rise time is 400us               |  |



Current density distribution analyzed with Pattern III.

- Yellow is a high density region.
- Most of the current drifts through the shortest route.

## 3D Analysis results

Comparison results of integrated magnetic field distribution under five conditions



- Different distributions are shown for DC, Sine, and Pattern, and the effect of using a mesh coil by 3D analysis can be confirmed.
- Under three pattern conditions, there was no significant difference in distribution due to the difference between the rise time and current of the pattern waveform.

## Measurement using three types of probes



Magnetic field measurement scene



The tip of the carbon rod

#### Transverse Hall probe

- Made by Lake Shore
- HMFT-4F15-VR-HF-10
- DSP Gaussmeter Model 475
- The width of the tip is about 4mm.
- Peak frequency range is 50kHz.

#### Fluxmeter field probe

- Made by Lake Shore
- FNT-5P04-30
- Model 480 Fluxmeter
- The width of the tip is about 8mm.
- Area-turns is 30 cm<sup>2</sup>
- AC frequency response to 50kH.

#### Search coil

- Ф20mm, 20 turns,
- Wire diameter 0.1mm
- Handmade

## Differences due to measurement probes



#### Measurement conditions

- Comparison using Pattern II Peak is 8kA, Rise time is 850us
- Each probe fixed to the center of the core. (X=Y=0, Z=330mm)
- Total frequency is 2668 shots. The data for each probe is saved at the same time.
- The fluctuation of the current value for each shot was normalized at 8kA. The standard deviation after correction indicates the measurement error of each probe.

\*The histogram classification is fixed at 8 Gauss.

| ltem               | Fluxmeter | Search coil | Hall probe |
|--------------------|-----------|-------------|------------|
| Average            | 1357      | 1322        | 1282       |
| Standard deviation | 0.187     | 0.705       | 0.290      |

The minimum standard deviation was fluxmeter.

# Comparison of measurement and analysis

Comparison using Pattern II: 8kA, Rise time is 850us.

Distribution in the Z-axis direction at the center of electromagnet (X=Y=0). Plot the average of 5 shots.





- The Fluxmeter was the maximum value under the same conditions.
- The normalized distribution shape is almost the same except for the search coil.
- The cause of the difference between absolute value and measurement accuracy will be investigated in the future.

## Hall probe weaknesses





Transverse Hole probe

- Deviations from symmetry at the bottom of the magnetic field distribution were confirmed only for the Hall probe.
  - Since the Hall probe is a temperature compensation probe, the decrease in magnetic sensitivity due to the heat of the electromagnet is compensated.
  - Therefore, the pulse magnetic field affected the sensor as noise, which may have reduced the measurement accuracy.

# Comparison of analysis and measurement





- Comparison between ELEKTRA with mesh conductor and pattern II excitation
- The analysis and measurement results are in good agreement.
- Measurement probe differences are not noticeable in a few percent comparison.
- Comparison between TOSCA and DC excitation.
- Measurement was performed by exciting 600A DC current to the bump magnet with pulse design.
- There is a few percent difference between BL and By.
- By peak of 600A is about 95G, and it is considered that there was an influence of several gauss of residual magnetic field.

# Summary

- A characteristic pulsed electromagnet with high current, high voltage and fast repetitive pulse excitation was designed and fabricated.
- In this design, it was found that high-precision magnetic field analysis including eddy current and skin effect is possible by combining the dynamic magnetic field analysis of OPERA-3D and the mesh conductor coil model.
- The result of the 3D analysis were compared to measurements with pattern excitation using three magnetic field measurement probes.
  - There was a slight difference between absolute and relative results, respectively. However, the comparison between **the relative values and the analysis was very good**. In particular, **the fluxmeter was an excellent tool**.
- The difference between DC magnetic field analysis and measurement seems to be influenced by the residual magnetic field.
  - I would like to try a test that cancels the residual magnetic field, or a test that reduces the effect of the residual magnetic field by preparing a high-current DC power supply.

#### **Acknowledgments**

Thank you for the teaching and the cooperation of Mr. Tanaka in Kyokuto Boeki Kaisha, Ltd.