

Design and Testing of a Gas-helium Conduction Cooled REBCO Magnet for a 300 kvar HTS Synchronous Condenser

Presented by: Timing QU (瞿体明)

Tsinghua University: Qihong WU, Peng SONG, Yufan YAN, Timing QU

China Southern Power Grid: Zhengjun SHI, Meng SONG

- Background
- Project overview
- > Test of the magnet prototype
- > Summary

Thomas Edison

Transmission Lines: UHVDC

- Voltage and current, the same phase
- All active power

Nikola Tesla

Distribution Lines: AC

- Voltage and current, with phase lag
- Active and Reactive power

- ✓ Lack of reactive power in UHVDC, in rectification or inverter operation.
- ✓ Stable and reliable **reactive power condensers** are in need in China.

Dynamic synchronous condenser

Conventional DSC:

- A special case of synchronous motor
- No mechanical load, only reactive power
- Excitation current to control output

Kalsi S, et al. IEEE Transmission & Distribution Conference, Dallas, TX. 2006.

Technical merits of HTS DSC

- High efficiency (nearly no heat loss in rotor)
- Long lifetime of HTS rotor
- Small synchronous reactance, fast response time
- Small volume, light weight
- Strong capability of VARs compensation

MT 26 International Conference on Magnet Technology Vancouver, Canada | 2019

30MVA superconducting DSC

Mitsubishi, Japan, 1985

IEEE Trans. Magnetics, VOL. MAG-21, NO. 2, MARCH 1985

70MVA superconducting generator

Hitachi, Japan, 1997

IEEE Trans. Appl. Supercond. VOL. 7, NO. 2, JUNE 1997

AMSC --- 8 Mvar/13.8 kV SuperVARTM HTS DSC

10 Mvar HTS synchronous condenser (2018-2021) Funded by China Southern Power Grid

Phase 1 (2018-2019): 300 kvar prototype Under construction

- > 10 Mvar, 1500 rpm
- > REBCO rotor magnets
- ➢ Gap field > 1.4 T
- Non-ferro teeth
- Cooled by 20 K gas helium

- ✓ Consider the angular dependence of REBCO tapes
- √ 30° field at point 2
- ✓ 320 A @ 25 K

☐ Test of the magnet prototype

Items	Description
Coils type	Racetrack shaped double pancake
Wires	REBCO 5 mm tape from SSTC
Rated current	280 A @ 20 K
Efficient length	300 mm
Coils Turns	170, 230, 270, 310

Distributed Pipes In Plates (**DIP**) structure for cooling magnets

Coil 2: 103 A @ 77 K Coil 3: 90 A @ 77 K

☐ Test of the magnet prototype

Temperature sensors: T1 - T4

Voltage taps: V1 - V5

Hall sensors: B1 - B3

Cooling Process

- ✓ Surface temperature of Coil 2&3 was 2 K higher than the helium gas.
- ✓ Surface temperature of Coil 2&3 was very close.

☐ Test of the magnet prototype

Current manually increased up to 281 A

Time (hour)

- Voltage fluctuations were caused by inductance
- A stable operation current at 281 A was achieved

 The body resistance of Coil 2 is quite high, suggesting a bad connection between copper terminal and HTS tape

Field values at different positions

- Surface field reached up to 1.16 T
- The result was in good agreement with the simulation

Stable temperature vs. operation current

- Both Coil 2 and Coil 3 can reach a thermal stable state.
- Up to 281 A, the temperature difference between coils and helium gas remained ~2 K.

Thermal stability test @ 281 A

- ✓ Hold the operation current @ 281 A
- ✓ Adjust temperature of helium gas from 20 K to 25 K.
- ✓ Temperature of coils rose from around 22.5 K to 27 K.
- ✓ Temperature of coils could come back to stable again.

	Coil 1	Coil 2	Coil 3	Coil 4	Coil 5	Coil 6	Coil 7	Coil 8
/ _c @ 77 K (1 μV/cm)	101	103	109	95	110	95	110	96
<i>I</i> _c @ 77 K (0.1 μV/cm)	93	95	100	85	103	89	100	90

- ✓ A 300 kvar HTS synchronous condenser is under construction as Phase I of a 10 Mvar HTS DSC project in China.
- ✓ A gas-helium conduction cooled structure was proposed, and magnet prototype was designed and fabricated.
- ✓ Testing results showed the DIP structure could help coils work safely under rated conditions.

Acknowledgement

✓ Magnet Producer:

Xi'an Superconducting Magnet Technology Co.,Ltd

✓ HTS material:

✓ Stator:

THANKS

For Your Attention

敬请指正赐教!