

Powering test of the prototype CCT orbit corrector

<u>F.J. Mangiarotti</u>, M. Duda, L. Fiscarelli, G. Kirby, M. Bajko, D. Coll, V. Desbiolles, J. Feuvrier, J-L. Guyon, J. Mazet, M. Mentink, J. Van Nugteren, K. Pepitone, J.C. Perez, F.-O. Pincot, G. de Rijk, J. Robertson, J. Steckert, E. Todesco, G. Willering

MT26 Conference – Vancouver, Canada – 2019 Sep 26

HL-LHC D2 orbit corrector "MCBRD"

Main magnet specs:

- NbTi conductor
- Nominal integrated field: 5 Tm (@ 393 A)
- Nominal / peak field: 2.6 / 3.1 T
- Length: 2.19 m
- Multipoles < 10 units
- Two independently powered apertures, with perpendicular magnetic field

MCBRD magnet design: "CCT"

Each canted solenoid is supported on a cylindrical former with grooves for the superconducting wires

MCBRD prototype magnet

Canted solenoid winding

Superconductors in the cylinder's grooves

Outline

- Training
- Magnetic field quality
- Conclusions

For information about quench protection, please see Matthias Mentink's presentation

Magnet training overview

AP2 has very slow training

Magnet training overview

- AP2 has very slow training
- However: no detraining

- X AP1
- + AP2
- **X** Both
- Nominal
- —Ultimate

Training aperture 1 (vertical field)

Training aperture 2 (horizontal field)

Event #

Outline

- Training
- Magnetic field quality
- Conclusions

Nominal integrated magnetic field

The magnet will be cycled up to nominal so we consider the branches going up.

The magnet reaches 5 Tm ±1‰ at 393 A

- both polarities
- both apertures

This is 9% less than the simulated nominal current (430 A)

Magnetic field quality

AP1 (vertical field): all within specs (10 units)

AP2 (horizontal field): all within specs except a3:

These 10 units of a3 are still present at room temperature, but they disappear when the iron is removed

Outline

- Training
- Magnetic field quality
- Conclusions

Conclusions & future plans

Training to ultimate current:

- Good in aperture 1 (3 quenches to ultimate current)
- Very slow in aperture 2 (26 quenches to ultimate current). Mostly in the shallower three wires of the winding.
- No further training at 4.5 K, and perfect memory after thermal cycle

Magnetic field quality:

- Nominal field is reached at 393 A instead of 430 A, acceptable main field crosstalk (2‰)
- Large a3 (-15 units) on aperture 2 when affected by crosstalk. All other multipoles within 10 units

Future work:

- A new aperture is being manufactured to replace AP2
- New magnet assembly to be tested in November 2019

Test setup

 Two independent quench detection systems:

■ Baseline asymmetricQDS: △ vs ◆ ■ ●

Additional symmetric
QDS: vs

Superconductor in the groove

