A Design Study on No-Insulation HTS 385 MeV/u Isochronous Cyclotron Magnet for Carbon Ion Therapy

<u>Jeonghwan Park</u>¹, Garam Hahn², Jeseok Bang¹, Uijong Bong¹, Kibum Choi¹, Jung Tae Lee¹, and Seungyong Hahn¹

¹ Department of Electrical and Computer Engineering, Seoul National University

² Pohang Accelerator Laboratory, Pohang University of Science and Technology

Magnet Technology Conference 2019 (MT26)
Vancouver, Canada

09/26/2019

- 1.1 Former Studies on Heavy Ion Accelerator for Cancer Treatment
- 1.2 Key Concepts: Multi-width & No-Insulation Technique & 20 K Cryocooling

2. Design Overview

- 2.1 Summary Table: Requirements & Physical Constants & Dimension
- 2.2 Design Process: Design Flowchart
- 2.3 Design Target: Extraction Energy of 385 MeV/u

Contents

- 3.1 Electromagnetic Design
 - 3.1.1 Parameter Sweep for Main Yoke
 - 3.1.2 Hill Yoke Design toward Isochronous Field
 - 3.1.3 Coil Configuration with 20 % *I_c* Margin
- 3.2 Mechanical Stress Analysis with Force Balance Equation: Peak Strain < 0.33 %
- 3.3 Operation Analysis: Charging Scenario with NI Characteristic Considered
- 3.4 Quench Analysis: Temperature Rise & Unbalanced Force
- 4. Summary: 385 MeV/u NI-HTS Magnet (6.2 m OD; 540 tons; 20 K)

1.1 Former Studies on Carbon Ion Accelerator for Cancer Treatment

- Cyclotron
- ☐ Carbon cyclotron has not been built yet.
- (C400, KIRAMS430 designs are presented)
 - (1) Small space
 - (2) DC operation: simple control
 - (3) Continous beam

Ref: H. W. kim *et al.*, "Design study of the KIRAMS-430 superconducting cyclotron magnet," *Nucl. Inst. Methods Pys. Res.*, A 823 (2016), 26-31

- Synchrotron
 - □ Several systems are available (HIMAC,HIT...)
 - (1) Large space
 - (2) AC operation: complex control
 - (3) Discontinuous beam

Ref: Y. Jongen *et al.*, "Compact superconducting cyclotron C 400 for hadron therapy," *Nucl. Inst. Methods Pys. Res.*, A 823 (2010), 47-53

Ref: https://www.nirs.qst.go.jp/ENG/rd/1ban/himac_inf.html

Current systems are constructed (or designed) with Cu (or LTS) technology

1.2 Key Concepts: No Insulation (NI) / Multi-Width (MW) / Cryocooling

- No-Insulation (NI)
- 1. Excellent protection
- 2. High mechanical intensity
- 3. High current density

NI: "Quench Current Bypass"

Multi-Width (MW)

Minimization of conductor usage

- Cryocooling: 20 K operation
 - 1. Helium free cryogenic system
 - 2. >100 stability margin than LTS

A Design Study on HTS Cyclotron Magnet for Carbon Ion Therapy MT2019 (Thu-Af-Or23-08), 09/26/2019 (2017), 105012

- 1.1 Former Studies on Heavy Ion Accelerator for Cancer Treatment
- 1.2 Key Concepts: Multi-width & no insulation technique & 20 K cryocooling

2. Design Overview

- 2.1 Summary Table: Requirements & Physical Constants & Dimension
- 2.2 Design Process: Design flowchart
- 2.3 Design Target: Extraction energy of 385 MeV/u

Contents

- 3.1 Electromagnetic Design
 - 3.1.1 Parameter Sweep for Main Yoke
 - 3.1.2 Hill Yoke Design toward Isochronous Field
 - 3.1.3 Coil Configuration with 20 % *I_c* Margin
- 3.2 Mechanical Stress Analysis with Force Balance Equation: Peak Strain < 0.33 %
- 3.3 Operation Analysis: Charging Scenario with NI Characteristic Considered
- 3.4 Quench Analysis: Temperature Rise & Unbalanced Force
- 4. Summary: 385 MeV/u NI-HTS Magnet (6.2 m OD; 540 tons; 20 K)

2.1 Overview Table: Requirements & Physical Constants & Dimension

■ 3 Considerations: (A) Cost (B) Performance (C) Reliability **Physical constants Design Process** Requirements **Dimension** Main Yoke Iron Weight A. Cost Main Yoke Compactness Configuration 1. EM Design Conductor Length h_1, h_2, t_1, t_2 Magnetic Rigidity Field Strength B. Peformance Coil Angle width Isochronous Field Configuration 2. Beam Stability Field Distribution **AVF** Design lop Coil size Mechanical <u>E</u>-0.5 Mechanical Strain # of dps C. Reliablity Integrity Cowinding **Charging Time** -1.0 Spiral angle 3. Mechanical Hill Yoke Operating **Overstress Analysis** -1.5 Configuration Scenario Spiral angle Unbalanced Force 4. Operation 0.5 1.0 1.5 2.0 Angle width **Analysis Quench Sencario** Temperature Rise Pole gap Analysis from field distribution & coil parameters

Park, Jeong Hwan hwan1022@snu.ac.kr

A Design Study on HTS Cyclotron Magnet for Carbon Ion Therapy MT2019 (Thu-Af-Or23-08), 09/26/2019

2.2 Design Process: Design Flowchart

7 Steps for Specified Design Process

Constraints

- 1. |Bcal-Biso| < 10 gauss
- 2. (lop < 0.8 lc)
- 3. Strain < 0.4%
- 4. Stable beam dynamics

Keywords for each design steps

- 1: Parameter sweep method
- 2: Gauss-Newton method
- 3: Isochronous field
- 4: $I_c(|B, \theta, 20 \text{ K}|)$
- 5 : Strain
- 6 : Tune diagram
- 7 : Charging delay & quench analysis

2.3 Design Target: Extraction Energy of 385 MeV/u

- Why 385 MeV/u? : To treat cancer deep in ~26 cm
- □ Depth Distribution of Cancer for Patients at HIMAC

Ref) U. Amaldi *et al.*, "Accelerators for hadrontherapy: from Lawrence cyclotrons to linacs," *Nucl. Inst. Methods Pys. Res.*, A 620 (2010), 563-577

- 1.1 Former Studies on Heavy Ion Accelerator for Cancer Treatment
- 1.2 Key Concepts: Multi-width & No Insulation Technique & 20 K Cryocooling

2. Design Overview

- 2.1 Summary Table: Requirements & Physical Constants & Dimension
- 2.2 Design Process: Design Flowchart
- 2.3 Design Target: Extraction Energy of 385 MeV/u

Contents

- 3.1 Electromagnetic Design
 - 3.1.1 Parameter Sweep for Main Yoke
 - 3.1.2 Hill Yoke Design toward Isochronous Field
 - 3.1.3 Coil Configuration with 20 % I_c Margin
- 3.2 Mechanical Stress Analysis with Force Balance Equation: Peak Strain < 0.33 %
- 3.3 Operation Analysis: Charging Scenario with NI Characteristic Considered
- 3.4 Quench Analysis: Temperature Rise & Unbalanced Force
- 4. Summary: 385 MeV/u NI-HTS Magnet (6.2 m OD; 540 tons; 20 K)

3.1.1 Electomagnetic Design: Parameter Sweep for Main Yoke

- Main yoke Configuration: Ampere Turn vs. Main Yoke Weight
 - ☐ Simplified 2D Axisymmetric Model

(a)

$$B_{app}^{3D}(r) = \alpha(r)B_h(r) + (1 - \alpha(r))B_v(r)$$

 $B_h(r)$, $B_v(r)$: field at (a) and (b) / α : arbitrary hill ratio

hwan1022@snu.ac.kr

Sweeping Parameters

 $h_1: [0.6 \ 0.05 \ 1.2]$ $t_1: [0.6 \ 0.05 \ 1.0]$ $r: [0.6 \ 0.1 \ 1]$ $(= t_2/t_1 = h_2/h_1)$

Gauss-Newton Parameters

h, w

Gauss-Newton Method

3.1.2 Electomagnetic Design: Hill Yoke Design toward Isochronous Field

■ Hill yoke Configuration: Shaped by Controlling Angle Width & Spiral Angle

3.1.3 Electromagnetic Design: Coil Configuration with 20 % I_c Margin

■ Finalized Magnet Configuration: Corresponding Parameters & Field Distribution

Park, Jeong Hwan

<hwan1022@snu.ac.kr>

- 1.1 Former Studies on Heavy Ion Accelerator for Cancer Treatment
- 1.2 Key Concepts: Multi-width & No Insulation Technique & 20 K Cryocooling

2. Design Overview

- 2.1 Summary Table: Requirements & Physical Constants & Dimension
- 2.2 Design Process: Design Flowchart
- 2.3 Design Target: Extraction Energy of 385 MeV/u

Contents

- 3.1 Electromagnetic Design
 - 3.1.1 Parameter Sweep for Main Yoke
 - 3.1.2 Hill Yoke Design toward Isochronous Field
 - 3.1.3 Coil Configuration with 20 % *I_c* Margin
- 3.2 Mechanical Stress Analysis with Force Balance Equation: Peak Strain < 0.33 %
- 3.3 Operation Analysis: Charging Scenario with NI Characteristic Considered
- 3.4 Preliminary Quench Analysis: Temperature Rise & Unbalanced Force
- 4. Summary: 385 MeV/u NI-HTS Magnet (6.2 m OD; 540 tons; 20 K)

3.2 Mech. Analysis with Force Balance Equation: Peak Strain < 0.33 %

• Governing Equation (Force Balance Equation) : $\sigma_r - \sigma_h + BJr + r\frac{\partial \sigma_r}{\partial r} = 0$

3.3 Operation Analysis: NI Characteristcs Considered Charging Analysis

Charging Scenario with "Active Control System" + "Overshoot Technique"

☐ Contact Resistance

10 T metal insulation HTS insert in Grenoble 32T

Ref) Xavier CHAUD *et al.*, "A 10 T HTS insert made of MI Pancakes Tested in a Magnetic Field up to 20 T," presented at EUCAS 2019, Glassgow, UK, 2019.

 R_{ct} > 1,000 $\mu\Omega \cdot \text{cm}^2$ in previous studies

Ref) T. Lecrevisse *et al.*, "A (RE)BCO Pancake Winding With Metal-as-Insulation,".*IEEE. Trans. Appl. Supercond.*, vol.26, no. 3, 2016

Strategy for Reducing Charging Delay

(1) Use of bundle tape

Ref) T. Watanabe *et al.*, "HTS Coils Wound by Bundle Conductor Composed of No-insulated REBCO Tapes," presented at EUCAS 2019, Glassgow, UK, 2019.

(2) Increase $R_{ct} > 20,000 \,\mu\Omega \cdot \mathrm{cm}^2$

Ref) WD Markiewicz *et al.*, "Quench transient current and quench propagation limit in pancake wound REBCO coils as a function of contact resistance, critical current, and coil size," Supercond. Sci. Technol, 32, 2019, 105010

□ Charging Analysis Results

Total Radial Resistance: $7.1 \text{ m}\Omega$

It takes 250 hrs to charge the magnet

3.4 Preliminary Quench Analysis: 168 K Rise, 4.3 MN Unbalanced Force

- Temperature Rise
 - □ Enthalpy Analaysis: ~170 K rise.

Total energy: 67 MJ Winding volume: 0.21 m³

- Unbalanced Force (Worst Scenario)
 - Total Axial Lorentz Force: 4.4 MN

A situation that one split coil is fully discharged

Fig. Quarter model for magnetic simulation

- Other issues (maybe critical) on quench scenario
- (1) Overstress in NI magnet;
- (2) Screening-current induced stress

- 1.1 Former Studies on Heavy Ion Accelerator for Cancer Treatment
- 1.2 Key Concepts: Multi-width & No Insulation Technique & 20 K Cryocooling

2. Design Overview

- 2.1 Summary Table: Requirements & Physical Constants & Dimension
- 2.2 Design Process: Design Flowchart
- 2.3 Design Target: Extraction Energy of 385 MeV/u

Contents

- 3.1 Electromagnetic Design
 - 3.1.1 Parameter Sweep for Main Yoke
 - 3.1.2 Hill Yoke Design toward Isochronous Field
 - 3.1.3 Coil Configuration with 20 % *I_c* Margin
- 3.2 Mechanical Stress Analysis with Force Balance Equation: Peak Strain < 0.33 %
- 3.3 Operation Analysis: Charging Scenario with NI Characteristic Considered
- 3.4 Preliminary Quench Analysis: Temperature Rise & Unbalanced Force
- 4. Summary: 385 MeV/u NI-HTS Magnet (6.2 m OD; 540 tons; 20 K)

4. Summary: 385 MeV/u NI-HTS Magnet (6.2 m OD; 540 tons; 20 K)

hwan1022@snu.ac.kr

Thanks for your attention

Acknowledgement: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A2B3009249).