

MT 26 International Conference on Magnet Technology Vancouver, Canada | 2019

Part of the present work was supported by the JST Mirai-Program Grant Number JPMJMI17A2 and Grant-in-Aid for JSPS Fellows Grant Number 19J11812

- Y. Suetomi^{1,2}, T. Yoshida^{2,3}, S. Takahashi^{2,3}, T. Takao³, G. Nishijima⁴, H. Kitaguchi⁴, Y. Miyoshi⁵, M. Hamada⁵, K. Saito⁵, P. Renzhong², Y. Yanagisawa², H. Maeda^{2,6}
- ¹ Chiba University, ² RIKEN,
- ³ Sophia University, ⁴ NIMS,
- ⁵ JASTEC, ⁶JST

Contents

1. Background: Towards 1.3 GHz NMR

2. 30 T generation by LTS/Bi-2223/LNI-REBCO coils

3. LNI-REBCO coil quench at 31 T

Our target: Persistent mode 1.3 GHz NMR magnet

Requirements

 30.5 T generation by LTS / Bi-2223 / REBCO layerwound coils.

etc.

Previous achievement:

27.6 T generation by LTS / Bi-2223 / REBCO layer-wound coils

Y Yanagisawa et al., IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (Global Edition), 21(6), 3599–3603., (2016)

Possible protection method for a REBCO layer-wound coil: "intra-Layer No-Insulation (LNI)" method

Y Suetomi et al., SuST, 32, 045003 (2019)

- > Short field delay
- > Self-protection

Homogeneous field decay in the axial direction during quench.

Possible protection method for a REBCO layer-wound coil: "intra-Layer No-Insulation (LNI)" method

Y Suetomi et al., SuST, 32, 045003 (2019)

- > Short field delay
- > Self-protection

The effectiveness of the LNI coil under the following conditions has not been revealed.

- Practical number of layers (~100 layers)
- Under high-fields (>20 T)

Objectives of this work

To demonstrate...

- ➤ Generation of >30 T by LTS / Bi-2223 / REBCO layer-wound coils.
- Protection for a REBCO layer-wound coil against a quench under high-fields by an LNI method.

Contents

1. Background: Towards 1.3 GHz NMR

2. 30 T generation by LTS/Bi-2223/LNI-REBCO coils

3. LNI-REBCO coil quench at 31 T

Configuration of 30 T model test coil

30 T generation test coils

LNI-REBCO coil #2

- 1604 turn
 (~9 turns/layer × 180 layers)
- τ (4.2 K, S.F.) = 0.21 s

Configuration of 30 T model test coil

30 T model test coil

Parameters	REBCO coil	Bi-2223 coil
Conductor Type	SuperPower Inc.	SEI, Ltd.
	SCS4050	HT-NX
Winding	LNI	Layer-wound
Inter-layer material	Cu+PET sheet (26 µm) -
Impregnation	Paraffin wax	Paraffin wax
Over-band material /	Ni-alloy tape /	Brass round wire /
Over-band thickness	2.1 mm	0.9 mm
Coil I.D. / O.D. (mm)	17.6 / 66.95	81.1 / 125
Coil height (mm)	40.1	384
Number of turns	1604	4640
	(~9 ×180)	(~80×58)
Number of joints	0	3
lop (A)	265	
lop / Ic	13 T _0.56	0.51
Magnetic field (T)	9.3	4.0
Self-inductance (mH)	47.7	450

Center magnetic field: 13 T + 17 T = 30 T

Results

30 T generation

Max. BJR : **462** MPa Max. σ_7 : **10.3** MPa

- **√30 T generation**
- √ Safely discharged

30 T generation: Coil voltage

electromagnetic forces.

Contents

1. Background: Towards 1.3 GHz NMR

2. 30 T generation by LTS/Bi-2223/LNI-REBCO coils

3. LNI-REBCO coil quench at 31 T

31 T generation

REBCO coil Quench

- 1. Quench occurred in the LNI-REBCO coil
- 2. Power supplies were shut down
- 3. HTS fields vanished
- 4. No quench in the LTS coil
- 5. Diode discharge

Max. BJR : **513 MPa**

Max. $σ_7$: **12.9 MPa**

Confirmation of the coil characteristic change

✓ No degradation

Degradations due to unbalanced electromagnetic forces as seen in the case of NI DP coils didn't occur.

✓ LNI-REBCO coil was protected from very high-field quench.

Short summary

√31 T was generated by using the LTS / Bi2223 / REBCO layer-wound coils without any
degradation.

(The highest field ever achieved by a LAYER-WOUND superconducting coil)

Behavior of the self-protection

Initiation of the quench

During the quench

- ✓ The DC power supply was shut down with 0.2 V of V_d.
 - The Bi-2223 coil did not quench.

During the quench

Magnetic fields homogeneously decayed in the axial direction.

Major benefit of an LNI coil

During the quench

Differences between

Ire and Bcen-re

Current bypass zone ratio

Propagation ratio

Assumption

- Quench was initiated inner layer.
- Current bypassed on layer basis.
- At bypass region, circumferential currents were zero.

Current bypass zone propagation started at the same time as the shutting down of supply currents.

Thanks to set V_d to 0.2 V

Propagation ratio

Key points

- ✓ Homogeneously field decay in the axial direction.
- ✓ Bypass zone propagation started at the same time as the shutting down of supply currents.
- ✓ Bypass zone propagation stopped at the middle of the winding.

Suppress unbalanced electro magnetic forces during the quench.

Summary

Summary

- 31 T generation by LTS/Bi-2223/REBCO layerwound coils
- Protection on the LNI-REBCO coil which has practical number of layers against the quench under 31 T

A big step towards a 1.3 GHz NMR magnet.

REBCO coil (30 T magnet)

REBCO coil (27.6 T magnet)

During charging

✓ No degradation Quench

✓ Protected

The LNI method worked. Why?

During charging

- × Premature degradation Quench
 - × Burnout