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The eRMC and RMM program at CERN

[1] S. Izquierdo Bermudez
[2] E. Rochepault

eRMC
Enhanced Racetrack Model Coil
16 T mid-plane field
• Demonstrate field on the 

conductor
• Coil technology development

RMM
Racetrack Model Magnet
16 T in a 50 mm cavity
• Demonstrate field on the aperture
• Mechanics (including inner coil support)

Base for the 
development of the 
technology needed 
for the 16 T dipole 

program

Slide courtesy of S. Izquierdo Bermudez

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7814201
https://ieeexplore.ieee.org/document/8295133
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eRMC and RMM magnets

[1] S. Izquierdo Bermudez
[2] E. RochepaultMagnetic field maps calculated using ROXIE

eRMC

RMM

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7814201
https://ieeexplore.ieee.org/document/8295133
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Focus of today’s presentation

Design of the quench protection systems
for full-scale [14.3 m] eRMC and RMM magnets

Main features:
→ CLIQ technology
→ Multi-physics analysis with STEAM-LEDET
→ Analysis of transients at all current levels
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Quench protection based on CLIQ

Modelling with STEAM-LEDET

eRMC magnet quench protection

RMM magnet quench protection

Quench protection of the 16 T Nb3Sn ERMC and RMM dipole magnets
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CLIQ (Coupling-Loss Induced Quench) technology

Coil SC→resistive

Temperature rise

Current change

Magnetic field change

Coupling losses (Heat)

Magnet current discharged

Reduced hot-spot 
temperature

[1] G. Kirby, V. Datskov, E. Ravaioli, 
Patent EP13174323.9, 2013
[2] E. Ravaioli, “CLIQ”, PhD thesis, 
2015

Main CLIQ ingredients
• Connection scheme
• Capacitance C
• Charging voltage U0

https://research.utwente.nl/en/publications/cliq-a-new-quench-protection-technology-for-superconducting-magne
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Inter-filament coupling loss

“Fast” loss:
Characteristic time 

constant in the order 
of ms or tens of ms

Deposited power
density roughly 
proportional to 

(dB/dt)2

Cu
SC

B
.
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CLIQ advantages & disadvantages with respect to conventional technology

• More effective energy 
deposition

• Faster and more homogeneous
quench initiation

• More robust electrical design

• Easier to implement and repair

• Lower expected failure rate

• Integration in the magnet circuit 
to be studied

• Internal voltage distribution to 
be carefully analyzed

• Redundancy of the system
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CLIQ technology tests

Name Where Year Geometry Superconductor Stored energy [MJ]

Small-scale solenoid CERN 2013 Solenoid Nb-Ti 0.04

Solenoid system Private 2014 Solenoid Nb3Sn -

MQXC2 CERN 2014 Quadrupole Nb-Ti 1.10

HQ CERN 2014 Quadrupole Nb3Sn 0.60

MQY CERN 2015 Twin-aperture quadrupole Nb-Ti 0.96

MB CERN 2015 Twin-aperture dipole Nb-Ti 6.88

MQXF
→Baseline for HL-LHC
inner triplet magnets

FNAL 2016-2019 Quadrupole Nb3Sn 1.46

CERN 2017-2019 Quadrupole Nb3Sn 1.46

BNL 2018-2019 Quadrupole Nb3Sn 4.91

11T dipole CERN 2017 Twin-aperture dipole Nb3Sn 1.94

PUP4 NHMFL 2017 Solenoid Bi-2212 0.3E-3
…and more in the pipeline

CLIQ was tested in 7 different test facilities on more than 15 magnets with different 
superconductor types (Nb-Ti, Nb3Sn, Bi-2212), geometries, and magnet sizes
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Quench protection based on CLIQ

Modelling with STEAM-LEDET

eRMC magnet quench protection

RMM magnet quench protection

Quench protection of the 16 T Nb3Sn ERMC and RMM dipole magnets
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LEDET in a nutshell

Tool to simulate electro-magnetic and thermal transients
in superconducting magnets.

• 2D magnet model + simplified electrical circuit
• Magnetic field maps and inductance dependence on iron yoke saturation 

calculated externally (usually with ROXIE)
• Inter-filament and inter-strand coupling currents included
• Turn-to-turn heat exchange, simplified helium cooling included
• Energy-extraction, quench heaters, CLIQ transients simulated
• Comes as a .exe file. A typical simulation runs in ~2 minutes.

https://cern.ch/steam

Framework to simulate 
transient effects in 
superconducting 

magnets and circuitsKey feature for 
CLIQ simulations

Application and tutorial freely available!
→More info: https://cern.ch/steam/ledet

[1] E. Ravaioli, “CLIQ”, PhD thesis, 2015
[2] E. Ravaioli et al., Cryogenics 2016

https://cern.ch/steam
https://cern.ch/steam/ledet
https://research.utwente.nl/en/publications/cliq-a-new-quench-protection-technology-for-superconducting-magne
https://www.sciencedirect.com/science/article/abs/pii/S0011227516300832
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LEDET validation and current studies
Project Magnet Notes Validation

LHC MQXA Helium, Heaters Partial

LHC MQXB Helium, Heaters Partial

LHC MQ Helium, Heaters, initial hot-spot Yes

LHC MQY Helium, Heaters, initial hot-spot Started

LHC MCBY Helium, Self-protection Started

HL-LHC MQXF Quench protection design Yes

HL-LHC 11 T dipole Yes

FCC Cos-θ Quench protection design No data available

FCC Block-coil Quench protection design No data available

FCC Common-coil Quench protection design No data available

Project Magnet Notes Validation

Other FECR sextupole Sextupole No data available

Other FECR solenoids Solenoids No data available

Other eRMC / RMM No data available

Other HEPdipo Block-coil No data available

Other HD3 Block-coil No data available

Other 16T common-coil Insert/Outsert No data available

Other PYPUP magnets Bi-2212, Solenoids No data available

Other RC series Bi-2212, Current-sharing Partial

Other LBL common-coil Bi-2212, Current-sharing No data available

Other 15 T dipole No data available

Other *** New quench protection ideas No data available

LEDET was used to simulate transients in more than 25 magnets with 
different superconductor types, geometries, quench protection systems

At MT26:
Mon-Mo-Po1.03-07
Mon-Af-Po1.16-04
Thu-Mo-Po4.02-03

Wed-Af-Or13-03
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LEDET current studies – The “zoo” 

not really in scale!
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LEDET simulations workflow

Magnetic 
model

(ROXIE)

Semi-
automatic 

model 
generation

Input file is an 
excel file

+
.exe file

Simulations  
are run           

in a batch

Output as txt 
files, figures, 

animated 
GIFs, pdf 
report,…
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Quench protection based on CLIQ

Modelling with STEAM-LEDET

eRMC magnet quench protection

RMM magnet quench protection

Quench protection of the 16 T Nb3Sn ERMC and RMM dipole magnets
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eRMC – Self-protectability

Above ~20% of nominal 
current, active 

protection is needed

Magnet self-protected 
for currents ≤3 kA

Assumed vQ=2.5 m/s
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eRMC – CLIQ connection scheme (per aperture)

Normal operation DC
current polarities and 

magnetic field Simplified CLIQ circuit

CLIQ-induced oscillating
current polarities and 

magnetic field

Upper pole Lower pole
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eRMC – Generation of inter-filament coupling loss

Oscillating current polarities 
and magnetic field

Peak inter-filament 
coupling loss (heat)
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eRMC – Quench protection at Inom – Effect of CLIQ voltage U0

In first approximation:

Peak current ∝ U0

Current rate ∝ U0

Power ∝ U0
2

Energy ∝ U0
2

Frequency ~
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eRMC – Quench protection at Inom – Effect of CLIQ capacitance C

In first approximation:

Peak current ∝ C0.5

Current rate ~
Power ~
Energy ∝ C
Frequency ∝ 1/C0.5
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eRMC – Quench protection at Inom – Effect of U0 and C

Reference

Selected configuration
C=60 mF  U0=1.5 kV
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eRMC – Quench protection at I=Inom=13.13 kA

At nominal current, 
hot-spot temperature 

maintained in a 
comfortable range of 

250 to 300 K



23Quench protection of the 16 T Nb3Sn ERMC and RMM dipole magnets – E. Ravaioli – 26 September 2019

eRMC – Quench protection at I=50% Inom=6.56 kA

At mid-range current, 
sufficient energy to 

quench large coil 
sections must be 

provided (C↑)
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eRMC – Quench protection at I=2 kA

At low current,
even more energy

must be provided (C↑)
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eRMC – Quench protection summary

Selected configuration
C=60 mF  U0=1.5 kV

Induces quench
at all current levels
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Voltage to ground distribution 
and hot-spot temperature

Currents in the system

eRMC – Quench protection at Inom – Reference quench protection
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eRMC – Quench protection at Inom – Reference quench protection
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Quench protection based on CLIQ

Modelling with STEAM-LEDET

eRMC magnet quench protection

RMM magnet quench protection

Quench protection of the 16 T Nb3Sn ERMC and RMM dipole magnets
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Above ~20% of nominal 
current, active 

protection is needed

RMM – Self-protectability

Magnet self-protected 
for currents ≤3 kA

Assumed vQ=2.5 m/s
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RMM – CLIQ connection scheme (per aperture)

Normal operation DC
current polarities and 

magnetic field Simplified CLIQ circuit

CLIQ-induced oscillating
current polarities and 

magnetic field

Upper pancake Lower pancake

Middle pancake
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RMM – Generation of inter-filament coupling loss

Oscillating current polarities 
and magnetic field

Peak inter-filament 
coupling loss (heat)
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RMM – Quench protection at Inom – Effect of CLIQ voltage U0

In first approximation:

Peak current ∝ U0

Current rate ∝ U0

Power ∝ U0
2

Energy ∝ U0
2

Frequency ~
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RMM – Quench protection at Inom – Effect of CLIQ capacitance C

In first approximation:

Peak current ∝ C0.5

Current rate ~
Power ~
Energy ∝ C
Frequency ∝ 1/C0.5
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RMM – Quench protection at Inom – Effect of U0 and C

Selected configuration
C=80 mF  U0=1.5 kV

Reference
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RMM – Quench protection at I=Inom=12.1 kA

At nominal current, 
hot-spot temperature 

maintained in a 
comfortable range of 

250 to 300 K
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RMM – Quench protection at I=50% Inom=5.77 kA

At mid-range current, 
sufficient energy to 

quench large coil 
sections must be 

provided (C↑)
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RMM – Quench protection at I=2 kA

At low current,
even more energy

must be provided (C↑)
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Selected configuration
C=80 mF  U0=1.5 kV

Induces quench
at all current levels

RMM – Quench protection summary
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RMM – Quench protection at Inom – Reference

Voltage to ground distribution 
and hot-spot temperature

Currents in the system
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RMM – Quench protection at Inom – Reference
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Conclusion

Quench protection of two 16 T Nb3Sn dipole magnets analyzed
→ All simulations performed with STEAM-LEDET

Proposed solution is based on CLIQ (Coupling-Loss Induced Quench)
→ CLIQ connection optimized for both magnets
→ CLIQ unit capacitance and charging voltage selected for both magnets
→ Solution will be tested in the coming month on a short magnet

With the proposed quench protection system
→ Hot-spot temperature <250 K at nominal current
→ Peak voltage to ground <1500 V at nominal current
→ Magnets protected at all current levels, with margin

Don’t forget to analyze the mid-current range!...
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QUESTIONS? E mm@ c e r n . c h

h t t p s : / / c e r n . c h / s t e a m

Emmanuele Ravaioli (CERN)
S. Izquierdo Bermudez, J.C. Perez, D. Tommasini, A. Verweij (CERN)
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Annex
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Energy exchanges in multiphisics models

Electro-thermal models LEDET
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eRMC magnet

[1] S. Izquierdo Bermudez
[2] E. Rochepault

In this analysis: Inom=13.13 kA

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7814201
https://ieeexplore.ieee.org/document/8295133
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RMM magnet

[1] S. Izquierdo Bermudez
[2] E. Rochepault

In this analysis: Inom=12.10 kA

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7814201
https://ieeexplore.ieee.org/document/8295133
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eRMC – Quench protection at I=75% Inom=9.85 kA
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eRMC – Quench protection at I=4 kA
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eRMC – Quench protection at I=3 kA
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eRMC – Reference quench protection system – C=60 mF, U0=1.5 kV

C=60 mF, U0=1.5 kV
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eRMC – Reference quench protection system – Zoom out

C=60 mF, U0=1.5 kV
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RMM – Quench protection at I=75% Inom=8.66 kA
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RMM – Quench protection at I=4 kA



54Quench protection of the 16 T Nb3Sn ERMC and RMM dipole magnets – E. Ravaioli – 26 September 2019

RMM – Quench protection at I=3 kA
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RMM – Ref quench protection system – C=80 mF, U0=1.5 kV

C=80 mF, U0=1.5 kV
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RMM – Reference quench protection system – Zoom out

C=80 mF, U0=1.5 kV
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RMM – Quench protection at Inom – Reference
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RMM – Self-protectability – I=2 kA
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RMM – Effect of quench propagation velocity – I=2 kA


