

First field quality measurements of a 15 T Nb3Sn Dipole Demonstrator

September 24, 2019

Thomas Strauss, E. Barzi, J. DiMarco, V.V. Kashikhin, I. Novitski, M. Tartaglia, G. Velev, A.V. Zlobin

US Magnet Development Program

Tue-Mo-Or7-02

Outline

- Data collection
 - Magnetic Measurement System
 - Measurement sensitivity
 - Centering Corrections
- Measurement discussion
 - Transfer Function (magnitude of the field)
 - Loop (Dynamic effects, eddy current)
 - Z-scan (behavior along magnet length)
 - Harmonics from Stair Step (geometric harmonics)
 - Comparison with Simulation
 - Decay and Snapback
- Summary

Magnetic Measurement System

- Rotating Coil Measurement System at Fermilab Vertical Magnet Test Facility
 - 0.75 1 Hz rotation
 - R_{ref} set to 17 mm (56% of aperture)
 - Shaft with attached probe to scan 'warm bore' of the magnet, 3 m stroke
 - Two probes, offset by 130 mm (16 layers, 2 Loops, 13 Windings each)
 - 130 mm x 22.25 mm PCB probe
 - 26 mm x 22.25 mm PCB probe
 - Dipole bucked signal

26 mm Probe sensitivity

130 mm probe sensitivity similar

Probe sensitivity a_n vs n (26mm probe)

- 1500 A Stair step 2000 A Stair Step 4000 A Stair Step
- 6000 A Stair Step 8000 A Stair Step 9000 A Stair Step

- 1500 A Stair step 2000 A Stair Step 4000 A Stair Step
- 6000 A Stair Step 8000 A Stair Step 9000 A Stair Step

Centering Correction

Hysteresis feed-down from b_3

Transfer Function for multiple measurements

Loop measurements

Conductor uses 11 mm width stainless core (nearly full width of cable)

TF vs current for varying ramp rates

Loop harmonic *b3* vs current for various ramp rates

20 A/s Loop measurements normal harmonics

 b_3 , b_5 , b_7 and b_9 vs current for Loop measurements

20 A/s Loop measurement skewed harmonics

 a_3 , a_5 , a_7 and a_9 vs current for Loop measurements

Z scan TF along magnet bore

Measured at 9kA

• z scan 26 mm probe (26 mm step)

▲ z scan, 130 mm probe (130 mm step)

z scan 26 mm probe (130 mm step)

Z scan TF, zoom

Measured at 9kA

Variations due to end field contributions z scan TF along center axis

z scan 26 mm probe (26 mm step)

• z scan 130 mm probe (130 mm step)

Z scan harmonics

Measured at 9kA, 26 mm probe

Errors smaller than symbols

Z scan harmonics

Geometrical Harmonics

• Stair step, 26 mm probe

Geometric harmonics nearly identical in stair step and loop, small except for a2,a3,b2, and b3

Transfer Function

Deuterium probe was loaned to FNAL by GMW

b₃ versus dipole field

b₅ versus dipole field

Decay and Snapback

Snapback

Summary

- Magnet TF and low-order field harmonics were measured using 26 mm and 130 mm long rotating coils in the field range up to ~14 T.
- The measurements included geometrical components and contributions from the coil magnetization and iron yoke saturation effects.
- All the measured geometrical harmonics, except for a_2 , a_3 , b_2 , b_3 , are small, on the level of 1 unit or less at R_{ref} =17 mm.
- The coil magnetization effect in MDPCT1 at low fields is large due to the high critical current density and relatively large sub-element size in the contemporary Nb₃Sn strands.
- The iron yoke saturation effect in MDPCT1 starts at fields above 2.5 T and is also large.
- Both coil magnetization and iron saturation effects are in good agreement with theoretical predictions for TF and b3
- The eddy current effect in the cable on the *TF* and field harmonics in MDPCT1 was suppressed by using a stainless-steel core inside the cables
- A first glimpse at Decay and snapback showed no new surprises assuming an LHC type accelerator profile

 We thank the technical staff of FNAL APS-TD for contributions to magnet design, fabrication and test, and US-MDP Management Group and Technical Advisory Committee for the support of this project.

 We thank GMW (<u>www.gmw.com</u>) for providing us with a Metrolab 1226 8-22T NMR probe for our PT2026 Teslameter

130 mm Probe sensitivity

+ 6000 A Stair Step - 8000 A Stair Step - 9000 A Stair Step

Probe sensitivity b_n vs n (130 mm probe) Probe sensitivity a_n vs n (130 mm probe) 100 100 Allowed terms 10 10 b_n in units a_n in units 0.1 0.1 ~ 0.1 units ~ 0.1 units 0.01 0.01 2 8 10 2 0 10 harmonic order harmonic order Sensitive to ~ n=8 ● 1500 A Stair step ● 2000 A Stair Step ● 4000 A Stair Step × 1500 A Stair step × 2000 A Stair Step ● 4000 A Stair Step

● 6000 A Stair Step ● 8000 A Stair Step ● 9000 A Stair Step