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H4C roadmap
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CICC model 
development

Verification

Validation

HTS magnet model: H4C

Integration in the 4C suite

Here focus on 
ENEA HTS CICC

Presented at 
CHATS2019
(KIT HTS CICC)

Quench tests in 
2020 @ SULTAN

Preliminary analysis to 
guide the development of 
the 1D CICC model [1]
[1] A. Zappatore et al., SuST 32(8), 2019

Target: to develop an HTS magnet model
First, an HTS CICC model needs to be developed



Aim of this work

• Develop a 1D model of the ENEA HTS CICC

• Calibrate the free model parameters through dedicated experiments

• Apply the 1D conductor model to the analysis of quench propagation 
in the ENEA HTS CICC

4



The ENEA HTS CICC

Application in the medium term: HTS CS insert 
for the Divertor Tokamak Test (DTT) facility 
currently under design in Italy 5

Aluminum core with 
twisted slots

Aluminum round 
jacket 1.5 mm thick

5 mm 𝜙 central hole for 
SHe cooling

6 slots (4.3 mm x 4.3 mm) 
equipped with 20 REBCO 
non-soldered 4-mm-wide 
tapes each

Aluminum filler to hold the 
HTS stack in position

22 mm

Side channels in each slot 



Preliminary analysis
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[1] A. Zappatore et al., SuST 32(8), 2019

Pe = Re Pr >> 1 

For SHe flow modelling a 1D
model along the conductor is 
sufficient

Fluid model Bistack > 1 , Bicore > 1 

For thermal modelling of the cross 
section 1 region (as in LTS TH 
models) is NOT sufficient

Solid model

Detailed model of the cross-section to 
obtain guidelines for the development of 
the CICC model [1]

Aim: understand qualitatively if LTS 1D codes (key feature: uniform T and J
on the cross-section) for TH analysis are OK also for HTS CICC



Detailed 0D+2D electro-thermal 
model of the CICC cross section
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Convection with He at 
T=4.5 K, h=5000 W/(m2K)

Heat conduction 
in solids 

2D Thermal

Thermal contact 
resistance

0D Electric

𝑉 = 𝑅𝐴𝑙𝐼𝐴𝑙

𝑉 = 𝑉𝐶
𝐼𝐻𝑇𝑆,𝑖

൯𝐼𝐶,𝑖(𝐵, 𝑇

𝑛

𝐼𝑡𝑜𝑡 = 𝐼𝐴𝑙 + 

𝑖=1

𝑁𝑆𝑡𝑎𝑐𝑘

𝐼𝐻𝑇𝑆,𝑖

𝑉

𝐼𝑡𝑜𝑡

𝑞𝑖 = 𝑅𝐼𝑖
2

𝑇

Aim of the detailed model: understand how different regions of the conductor cross-
section can be lumped to develop a 1D conductor model (along)



Results
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Temperature differences DT > 
50 K arise within the conductor

DT~10 K

DT~5 K

DT~20 K

Regions with DT < 20 K are lumped 

Multi-
regions 
1D model 
is needed



1D thermal + hydraulic + electric model
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25 • Heat conduction in solids 
(25 regions)

• Euler-like set of PDEs for 
SHe speed, pressure, 
temperature (13 regions)

• Diffusion-like equation for 
the current along the 
different solids (25 regions)

Fluid flow model

Thermal model

Electric model

Interfaces
• Solid – solid

‒ Thermal
‣ Core – jacket: 11400 W/(m2K) [2]
‣ Core – stack: 32000 W/(m2K) [2]

‒ Electric
‣ Linear resistance: 0.4 mW/m [exp.]

• Solid – fluid: heat transfer coefficient from CFD

THe=4.5 K
L= 132 m
B= 17.1 T
I=32 kA

Op. condition

[2] Y. A. Cengel, Fundamentals of Thermal-Fluid Sciences, 2017



Results (I)
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Temperature differences between stacks and 
core > 40 K→ issues on thermal stresses to be 
addressed in the future

• Inter-slot resistance low enough to guarantee 
current redistribution from the HTS stacks to the 
core

• Before the dump, the aluminum core arrives to carry 
most of the current, due to temperature increase in 
the tapes stabilizer

Detection
Dump



Results (II)
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Total dm/dt in side channels 
~ 1/20 dm/dt in hole

Limited cooling capabilities 
of He flow in side channels

Hot He helps propagating the 
quench downstream

External heating

Detection

Dump



Results (III)
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Same tdis for CS and insert ➔ too high hot-
spot temperature 

• Warning bell for quench propagation and 
current dump in an HTS magnet

• Foresee different strategy for the 
discharge of the CS insert

• The DTT CS will have delay time (tdelay) = 2 s and current discharge time (tdis) = 4 s 
BUT 

• tdelay and tdis for the CS insert are still an open issue in the design



Conclusions and perspective
• A 1D thermal-hydraulic-electric model has been developed and applied to the 

analysis of quench propagation in the ENEA HTS CICC

• The model shows that 

– Large temperature differences arise in the CICC cross-section 

– The current redistributes from the stacks to the slotted core

• The delay time for the quench detection in the DTT CS insert coil and the current 
discharge time should stay below 0.5 s, otherwise the hot-spot temperature 
becomes too high 

• In perspective, the CICC model will be:

– validated against the quench tests foreseen in 2020 @ SULTAN

– embedded in the H4C magnet model (which already includes winding pack, coil 
casing and cryogenic circuit) to analyze the performance of an HTS magnet 13


