

superior performance. powerful technology.

Progress of 2G HTS (RE)BCO Conductor Development for Magnet Applications

Drew W. Hazelton

MT26 - 2019 Thu-Af-Or19-01 September 26, 2019

SuperPower's (RE)BCO superconductor with artificial pinning structure provides a solution for demanding magnet applications

Electroplatina

- Hastelloy® C276 substrate
 - high strength
 - high resistance
 - non-magnetic
- Buffer layers with IBAD-MgO
 - Diffusion barrier to metal substrate
 - Ideal lattice matching from substrate through REBCO
- MOCVD grown (RE)BCO layer with BZO nanorods
 - Flux pinning sites for high in-field I_c
- Silver and copper stabilization

2G HTS wire has been produced with continuous upgrades at the manufacturing facility since 2006

Additional production equipment

Some of the quality control tools utilized....

In order to meet skyrocketing demand, our efforts are focused on...

- 1. Stable wire production especially for In-field performance
- 2. Longer piece length with homogeneous quality
 - up to 1000+ m charge lengths for MOCVD runs are now being routinely run
- 3. Achieve larger production capacity and lower cost by
 - stabilizing the whole process
 - and bringing all processes in house
 - while adding new equipment
- 4. R&D work for improved wire performance
 - Film optimization for target operating range
 - Higher current density by thinner substrate (30 µm std)
 - Higher current density by thicker film
 - Investigation for improved post processing techniques

Recent production run of ~770m with 546A avg. Ic

12 mm wide 50 μ m substrate Charge length ~800m before archival samples removed

Ongoing production progress

807m piece of insulated 4mmW 2G-HTS wire

on Magnet Technology Vancouver, Canada | 2019

Transport measurement

THEVA Tapestar measurement after Insulation

Ongoing production achievement

Consistent and as designed In-field performance has been confirmed.

SCS4050-A.P. (M4-353-7)

SCS4050-A.P. (M4-353-7)

SCS4050-A.P. (M4-353-7)

Ic-B-T-O measurement systems available to SuperPower

System at SuperPower Inc. (Ic-B-T-O)

- Cryo-cooled
- Operating condition is down to 30K
- Field strength is up to 2.5T
- Field angle can be rotated 180 degrees
- ~1000A can be applied to a sample

 2T- 77K reel-to-reel transport lo measurement system under development

Ic-B-T-O measurement systems available to SuperPower

System at Furukawa Electric Co.,Ltd. (NIKKO)(4K-B)

- LHe cooled
- Field strength is up to 8T or 17T (depending on test magnet types)
- Field direction is fixed (B±Tape surface)
- ~1000A can be applied to a sample

Measurement conditions to evaluate production wires

Currently we are choosing 30K-2T-O and 4K-8T(B//c) as representative measurement conditions to confirm the wire performances.

Measurement conditions to evaluate production wires

Correlation between Ic_min(30K,2T) and Ic(4K,8T, B⊥Tape surface)

Comprehensive testing capabilities for mechanical and electromechanical properties

- Axial tensile test at room temperature or at 77K (with I_c)
 - Measurement of elastic modulus and yield stress
 - Determination of critical stress and irreversible stress (strain)
- Measurement of delamination strength various testing methods
 - Peel test: at room temperature and with varying peeling angle
 - Pin-pull (c-axis tensile) test: at room temperature
 - Anvil (c-axis tensile) test: at room temperature or at 77K (with I_c)
- Transverse (c-axis) compressive test at 77K (with I_c)
 - Measurement of critical compressive stress
- Torsion-tension test at 77K (with I_c)
 - Measurement of critical tensile stress under twist
- Fatigue testing of conductor under development

Studies on mechanical/electromechanical properties

- Mechanical behaviors under various stress conditions at RT and/or 77K
- Electromechanical testing for stress (strain) dependence of I_c at 77K
- Electromechanical strength determined by critical stress with 95% I_c retention

Axial tensile RT or 77K w/ I_c

Transverse tensile Stud method RT or 77K w/ I_c

Stress-strain relationship curves of four different SCS4050 wires

Peel test result of M3-1337-3

- Production manual peel test result: Passed.
- Observation: the qualitative manual peel test showed a normal peeling.
 behavior of the sample tape, peeling within REBCO. No bubbling observed.
- R&D instrumented peel test result: average peel strength = 1.13 N/cm (minimum peeling force = 0.75 N/cm).
- Three samples were prepared from this section and tested at the 90° peeling configuration.
- Peeling force vs. displacement curves shown below. Normal peeling behavior, good peel strength, peeling within REBCO, and clean edges.

Ongoing research initiatives

- Thinner substrates demonstrated
 - 25 μm process development demonstrated thru all production cells
- Narrower tapes (1.0, 1.5 mm) under development
 - More development work to do on slitting, tape handling and Ic measurement
- Different process optimization windows for different operating conditions
 - High Ic at 77K, sf does not necessarily translate into high Ic at 4K, high field
- Thicker films
- Solder coated tapes available
- Studying joint resistances Ag:REBCO interface resistance dominates

Selective Cu plated 1mm tapes under Ic test

Process Parameter 1

Recent R&D; Optimization for Low-temp and High-field

	Ic_min[A/4mmW] Film thickness ~1.6um for both samples	
	A.P. wire	R&D sample A
77.3K-sf	193	107
50K-2T	198	107
40K-2T	317	264
30K-2T	492	652
30K-5T	239	320
20K-10T	193	278
10K-10T	288	536
4.2K-15T	266	406

All measurements in this slide were done at Tohoku Univ.

New Facility Under Construction

- New facility to be located adjacent to Schenectady County Airport, Glenville NY
 - ~ 48,000 sq ft (1st phase)
- Workforce will continue to expand as needed
- All manufacturing and standard product testing will continue to be done in house
- Full manufacturing in new facility starting in Q2 / 2020

Summary

- Strong focus on processing to improve uniformity, repeatability, piece lengths (currently up to 1 km) and yield.
- Maximize current capacity while implementing next generation equipment
 - Hardware and processing upgrades yielding benefits
 - Capacity upgrade underway
- R&D to enhance performance parameters for developing operating spaces
 - Thinner substrates

Ideal for cables such as CORC

- Narrower tapes
- Optimized pinning
- Further improve mechanical properties
 - Delamination mitigation
 - Ic (ε) with reinforcement
- Diverse market pull
 - Low temperature, high field
 - (Fusion, HEP, HF magnets)
 - Higher temperature, moderate field
 - Motors/generators
 - EERE NGEM (65K, 2-3 T)
 - Maglev
 - LN2 low field (Utility market)

Thank you for your attention

