

Design and Test of a Curved Superconducting Dipole Magnet for Proton Therapy

September 26th, 2019 26th International Conference on Magnet Technology: Vancouver, Canada

Lucas Brouwer

Lawrence Berkeley National Laboratory

Ion Beam Cancer Therapy

The Bragg peak is used to target the cancer tumor and minimize damage to healthy tissue

- ~95 operational facilities worldwide
- ~215 k patients treated historically
- majority proton (commercial)
- rapid growth (43 new proton centers in ~2020*)

http://www.ptcog.ch/index.php/facilities-in-operation, April 2017

State of the Art Treatment Uses a Gantry with Pencil Beam Scanning*

Gantry for multiple treatment angles

3D scanning "paints" the tumor volume

*as identified by a 2013 Joint DOE, NIH, and NCI accelerator stewardship workshop

 $http://science.energy.gov/\sim/media/hep/pdf/accelerator-rd-stewardship/Workshop_on_lon_Beam_Therapy_Report_Final_R1.pdf.$

DOE-HEP Accelerator Stewardship Funded Project for Compact Proton Gantries with Varian Medical and the Paul Scherrer Institute

Scanning proton gantries are large and heavy which contribute to high facility cost

Large momentum acceptance superconducting magnets show promise for

- 1. Weight and size reduction (cost)
- 2. Novel gantry beam optics (performance)

Momentum Acceptance Addresses a Key Technical Risk (Fast Field Ramping)

With little or no momentum acceptance, each energy change during scanning requires a new magnet setting

- fast scanning: up to 0.5 T/s
- heat from eddy currents in superconductor magnet windings/ structure is challenging for conduction cooling

With a large momentum acceptance, each magnet setting cover a range of treatment energy (e.g. 20% dp/p)

- ✓ with 20% momentum acceptance the entire proton treatment energy range can be covered with three magnet settings
- ✓ order of magnitude reduction in magnet field ramping
- typically requires combined function or more complex fields and beam dynamics

Highlights of the Accelerator Stewardship Project are: (1) the design of a SC proton gantry with 20 % momentum acceptance and (2) the test of a prototype magnet

Four layer CCT design with large acceptance (20%)

Bending Radius	900 mm
Bore Radius	105 mm
Magnetic Bend	135 deg
Momentum Acceptance $(\Delta p/p)$	20%
Constant Dipole	2.3 T
Alternating Quadrupole	$\pm 22.7~\mathrm{T/m}$
Stored Energy	0.86 MJ

Fabrication and test of two dipole layers

Bending Radius	900 mm
Clear Bore Diameter	290 mm
Magnetic Bend	50 deg
Physical Bend	90 deg
Inductance	0.541 H
Peak Operating Current (Inom)	922 A
Dipole Field at Inom	2.4 T
Conductor Field at Inom	3.2 T
Stored Energy at Inom	230 kJ

2.4 T dipole in 290 mm aperture (reduced bend angle)

Curved Winding Mandrels Assembled from Laminations Contain Channels to Position the Conductor

- Laminations reduce eddy current losses
- Laminations accommodate milling machine size limitations
- Hard anodized aluminum provides a first layer of electrical insulation

A stack of six electrically isolated Nb-Ti wires are wet-wound into the channels of each layer

1.6 x 1.6 mm square, formvar insulated NbTi wire, 2.8:1 Cu:Sc

Assembly and Vacuum Impregnation

Layer to layer assembly

VPI between layers

Assembly into clamshell structure with final VPI

Splicing of the wires in series and voltage tap layout

Additional Instrumentation

Hall probe array fixed in bending plane measures vertical field in five locations

Single acoustic sensor placed on the external structure (M. Marchevsky)

Fri-Mo-Or25-07: Analysis of the transient mechanics behind superconducting accelerator magnet training

Test Results: Quench Training

The magnet reached nominal current after 17 quenches (60% of wire short-sample)

16 of the 21 quenches were in the same wire (outermost of the inner layer stack)

Hall Probe Measurements Verify Design Field at Nominal Current (4.5 K, 922 A)

Test Results: Quench Back and Inductive Coupling

Inductive coupling with structure induces higher dl/dt -> faster quenchback

Strong quenchback observed starting around 400 A

Summary

- Lighter and more compact proton therapy gantries can be designed with superconducting technology
- LBNL, PSI, and Varian are working on large momentum acceptance SC gantries
 - o allowing for treatment over a range of proton energy with fixed magnetic field
 - lowering cooling requirements and risk (order of magnitude reduction in magnet ramp rate)
- A first curved, superconducting NbTi CCT magnet has been built and tested
 - o reached 2.6 T dipole field in a large aperture (290 mm)
 - o reached nominal current after 17 quenches in liquid helium at 4.5 K
 - preliminary magnetic measurements verify design field

The Gantry Magnet Team

LBNL: S. Caspi, J. Herrera, J. Swanson, M Maruszewski, M. Marchevsky, K. Edwards, J. Taylor, W. Wan, S. Prestemon, X. Wang, C. Myers, S. Myers, R. Hafalia, M. Turqueti, C. Sun, D. Robin, M. Reynolds, A. Hodgkinson, T. Lipton

<u>Varian Medical</u>: A. Godeke, M. Schillo, A. Huggins, R. Nast

<u>Paul Scherrer Institute</u>: M. Schippers, A. Gerbershagen, C. Calzolaio, S. Sanfilippo

Challenging "first-time" curved CCT fabrication relied heavily on the input and skill of LBNL technician staff

Extra Slides

Quench Protection (M. Turqueti, J. Taylor)

Fast IGBT switch places dump resistor in series with the magnet

FPGA quench detection system monitors unequal split of coil along length (with inductive scalings) -> switch trigger

Test Results: Preliminary Acoustic Measurements

This points to a very short timescale of the original events (short pulse has a broadband spectrum), and is consistent with the epoxy cracking

Fri-Mo-Or25-07: Analysis of the transient mechanics behind superconducting accelerator magnet training

Quench Propagation at 922 A

