

Field and Voltage transient behavior in REBCO HTS coils: Comparison between Experiments and modelling

Université Grenoble Alpes : B. Rozier, J. Vialle, P. Tixador

Tohoku University: A. Badel, K. Takahashi, T. Okada, S. Awaji

Outline

- Ongoing projects Motivation
- Modelling approach

Single tape pancake: BOSSE SMES Project @ CNRS Grenoble, France

Double tape pancake: 30 T upgrade @ HFLSM, Tohoku University, Japan

Summary

Cases under study: 2 ongoing projects

• In CNRS Grenoble : BOSSE Project

12 T, 192 mm bore solenoid (1 MJ SMES)12 mm single tape conductor

• In HFLSM, Tohoku Uni. : REBCO Insert upgrade 30 T CSM

16 T in 14 T LTS background 4 mm width, 2 tapes co-wound face-to-face

Prototypes (full or subscale) tested in self field and background field, at 4.2 K LHe

Protection of insulated REBCO magnets

HTS magnet do not really quench, they dissipate locally

We need to detect local dissipation before thermal runaway occurs

Model taking into account statistical tape properties fluctuation :

Help determine appropriate threshold values

Low detection threshold :

risk of false positive due to

Noise and Transient electromagnetic behavior

Modelling of the 25 T CSM REBCO insert behavior Badel et al, IEEE TAS 29(5), 4600605, 2019

BOSSE proto DP: Observed voltage transient behavior

Noise and inductive voltage removed by compensation coil

 The residual signal is due to transient electro-magnetic phenomena

Much higher in magnitude than our desired threshold!

- ✓ Noise filtering OK
- We need to predict transients!

Electromagnetic transient studies

Approach

- 2D Axisymmetrical model, thin sheet hypothesis
- Integral method: mesh only active regions
- E(J) relationship : power law with Jc(B,Theta) @ 4.2 K

External field due to outsert and /or other coil elements easy to include

Rozier et al, IEEE TAS 29(5), 4702105, 2019

Transient Voltage on single tape DP from BOSSE project

Coil Description :

- Double pancake
- 12 mm width REBCO tape (SuperOx)
- Top: 150 turns / Bottom: 168 turns
- R_{in} = 96 mm / h = 4 mm

- Fit the experiment with 72 % of short sample Ic
- Reduced model acceptable

Transient Voltage on single tape DP (2)

Axisymmetrical model = homogeneous conductor

This coil effectively reached its limit at 973 A

Using very slow ramp

Fitting of Voltage drift curve in "safe" low current region predict expected Ic in practical operation

Field non-linearity on single tape DP from BOSSE project

Hypotheses: Hall sensor linear, geometry as designed

600 A \approx 1 T center field (4.5 T on inner turn)

Field non-linearity on single tape DP from BOSSE project

Re-calibrated hall Sensor data (by mean value of cycle)

- ✓ Width of the hysteresis loop
- ✓ Field drift at plateau, Zero field drift

Single tape DP in 6 T background field

The external field is very homogenous: there should be no major change

- ☐ Under 6 T we reach up to 0.3 % elongation : hoop stress enlarge the coil, lowering the field
- ☐ Loop looks "compounded": missing phenomena, other deformation effects?

30 T CSM two tape co-wound prototype DP

Idea: mitigate the defect risk by putting to tapes in parallel

Are we sure that the current can flow in both tapes? Can redistribute locally?

Toshiba 2018 prototype: Co-wound Hastelloy reinforcement, teflon-coated isolation, impregnated

- 1500 A operating limit : current leads
- 600 A under 11 T: stress limit

We can model the two layers in parallel for each turn assuming perfect contact

Transient voltage in two tape co-wound DP

Transient similar to single tape DP: Model matches with 75 % of short sample Ic

Voltage transient modelled with two tape in parallel or a single « super tape » hypothesis very close much lighter model : real time calculation ?

Operation close but below critical current: we could not confirm the limit
 What does the field transient say?

Field non-linearity in two tape co-wound DP

Center field 2.5 T for 1500 A, recalibrated data

- Two competing effect: magnetization in width vs tape coupling
- Dominant "single tape" behavior but quantitatively much smaller
- Insight about current limit?

Electro magnetic model: Calculate the expected voltage transient
 Any deviation should trigger a preventive discharge – Possible real time execution

Works well in self field, gives inaccurate results in background

We neglect a phenomenon (mechanics, but not only?)

- A two tape co-wound pancake was tested successfully.
 Impossible to confirm its limit, but the model can help estimate the overall quality
- Experimental results on two tape co-wound DP are in good agreement with well-coupled hypothesis model

Large sensitivity to tape-to-tape distance

We need to develop the comparisons on many test cases with other teams

Luank Aon ;