

# 25 K performance of conduction-cooled solenoids wound from exfoliated filament YBCO cables

U.S. DOE Office of Science SBIR Phase I award DE-SC0018737, Phase II award DE-SC0013856

Slowa Solovyov, Zachary Mendleson, and Paul Farrell

Brookhaven Technology Group Inc., Stony Brook, NY 11794

www.brookhaventech.com



### **Outline**

- Introduction to ExoCable technology
- Mini coil test results: 77 K and 25 K
- Flux dynamics at 25 K and effect of temperature gradients
- Conclusion and future work

### Motivation: we need defect tolerant cable

#### **Across-tape defects**



#### **Deposition malfunction**



Some defects emerge during coil operation



**Along-tape defects** 



**Epitaxy failure** 



Courtesy of Anatolii Polyanskii NHMFL

- ✓ Avoiding defects in YBCO layers is difficult
- ✓ Some defects are hidden, get revealed only after coil tests

### Solution: electrically coupled cable

### We are solving the following problems:

- Single-filament magnets proven difficult to protect against burnout
- Substrate prevents efficient current sharing
- Multifilamentary cable is far more expensive than a single tape
- Not compatible with epoxy impregnation

#### **2G** wire stack



#### **BTG** exfoliated filament stack



### Multi-filamentary cable architecture



✓ Electrically connected filaments are the key element



## Test coil manufacturing process

**Dry wound** 

Vacuum impregnation, Stycast 1266

**Cooling collar attached** 









12 coils, over 100 meters of cable tested



### 77 K performance after re-flow and impregnation





- ✓ No Ic and n-value degradation after multiple rapid cool-downs to 77 K
- $\checkmark$  Solder reflow significantly reduces the winding noise, but reduces  $I_c$  by 8%



# Winding magnetization: flux penetration model into a coupled cable, highly anisotropic filament



# Central field hysteresis at 77 and 25 K



✓ At 22 K field dynamics is defined by relaxation at high currents

### Flux dynamics at 77 and 25 K



✓ Completely different field settling profile at 77 and 25 K.

# Heat migration from the current leads and effect on the field quality



✓ Winding temperature gradient are responsible for the field decay.

### Proposed cryocooled rectifier



# Mechanical design of the current management system



### System cooldown, cryogenic current drive



**Power input** 

**Traditional** 



**Cryogenic drive** 



✓ Lighter high-voltage input introduces very little conduction loss



# Powering a double-pancake coil with a cryogenic current drive





Significantly reduced hysteresis



### Conclusion and future challenges

### Conclusion:

- Demonstrated operation of epoxy-impregnated multi-filamentary cable in conduction cooled mode
- Winding magnetization at 25 K is strongly affected by thermal gradients, due to heat leakage trough current leads
- Cryogenic current drive reduced hysteresis

### Future challenges

- Scale-up of the filament handling
- Continuous splicing
- Designing interleaved multi-module current drive