Critical Current – Strain Dependence, $I_c(\varepsilon)$, of Solenoids Wound with Bi-2212 Round Wire

Ernesto Bosque

ASC HTS Coils Group:

U.Trociewitz, Y.Kim, D.Davis, C.English, G.Miller, E.Martin, J.Jones, E.Hellstrom, D.Larbalestier

APPLIED SUPERCONDUCTIVITY CENTER
NATIONAL HIGH MAGNETIC FIELD LABORATORY
FLORIDA STATE UNIVERSITY

Pup and Riky Prototype Coils

Specifications	Pup Riky		
ID; OD; Height [mm]	44.0 ; 83.3 ; ~ 25.0	118.0 ; 127.0 ; 12.5	
Turn ; Layer (Total)	~ 20 ; 18 (350)	10 ; 4 (38)	
Magnet constant	6.58 mT/A	0.39 mT/A	
Conductor length	Conductor length > 70 m		
	I II and a Challet Land and a self-	04	

Features and Purpose

High field insert coil

Hard to make

Expensive to test

Real Stress ≠ BJR

Stress test coil

Easy to make

Cheap to test

Real Stress ≈ BJR

(Y. Kim, Mon-Mo-Or2-04)

Finite Element Performance Envelope Predictions

Reinforcing the Riky Coils

Riky-1: No Reinforcement, predicted failure at 275 A (227 A/mm²) within the 8 T outsett

Riky-2: Fully Reinforced, predicted failure well above I_c of Riky-2 conductor

Riky-3: Reinforced with express intent to get to failure at 350 A (489 A/mm^2) within the 8 T outsert (*Reached 349 A*)

Metallic Reinforcement for Aspected Wire in a Riky Coil

Riky-8: Aspected conductor, cowound with metallic strip as reinforcement (*Reached 476 A (352 A/mm*²))

 I_{op} = 476 A (352 A/mm²) within the 8 T outsert

Metallic strip requires oxidization first

Reinforcing the Pup Coils: Progress, Lessons Learned, and Opportunities Still Available

	Pup-3	Pup-5	Pup-6	Pup-7
Test Date	Jun 2015	Feb 2018	Feb 2019	Jun 2019
Wire Diameter [mm]	Ф 1.3	Ф 1.0	Ф 1.0	Ф 1.0
PMM#	PMM131203-2	PMM140606	PMM160909-b	PMM180410-1
Powder	Lot 82	Lot 82	Lot 87	LXB-116
Architecture	121 x 18	55 x 18	121 x 18	85 x 18
ID ; OD ; Height [mm]	44.6 ; 91.6 ; 20.3	44.6 ; 86.6 ; 22.8	44.5 ; 86.2 ; 25.5	44.6 ; 84 ; 25.2
Total Turns	270	370	333	334
Max. I _{op} (B _{ext})	230 A (17 T)	215 A (8 T)	245 A (14 T)	345.8 A (14 T)
Max J _E	190 A/mm ² (18.0 T)	299 A/mm ² (9.5 T)	342 A/mm ² (15.5 T)	440.3 A/mm² (16.3 T)
Max. BJ _E R stress	140 MPa	99.2 MPa	199 MPa	278 MPa
Max. Stress	69 MPa	65.7 MPa	74.8 MPa	102.0 MPa
Max. Strain	0.22 %	0.26 %	0.26 %	0.39 %

(Y. Kim, Mon-Mo-Or2-04)

Pup-5

Wound with minimal reinforcement

Pigtail I_c (short sample) indicates decent OPHT

After experimental test, though, even *J·B·R* too low to be concerned with strain limit.

 I_{op} = 215 A (299 A/mm²) within the 8 T outsert

Pup-6 High Field Performance

Pup-6 High Field Performance

Mid tap included for CLIQ testing

Effectively provides a section (near layer 11) without the winding pack reinforcement, i.e. subject to JBR Lorentz stress.

 $I_{op} = 245 \text{ A} (342 \text{ A/mm}^2) \text{ within the } 14 \text{ T outsert}$

700

600

500

Pup-6 Lower Field Performance

Testing this coil at 3 T and 5 T further supports the argument that the mid tap was the root cause of Pup-6's less than desired performance.

 $I_{op} = 475 \text{ A } (663 \text{ A/mm}^2)$ in a 3 T background

 I_{op} = 420 A (586 A/mm²) in a 5 T background

Pup-7 Predicted Strain-limited Performance

Pup-7 was to be run in a 14 T outsert. The coil was well reinforced and did not include a mid tap. The strain-limited performance limit is indicated on the right.

 $I_{op} = 450 \text{ A} (628 \text{ A/mm}^2) \text{ within the } 14 \text{ T outsert}$

700

600

500

Pup-7 I_c-Limited Actual Performance

Takeaways:

Better coil manufacturing, design, and processing yields pigtails which indicate coil performance Opportunity still exists to get higher *I_c* and reach target strain-limits!

 $I_{op} = 346 \text{ A} (483 \text{ A/mm}^2) \text{ within the } 14 \text{ T outsert}$

700

600

500

Pup-7 pigtails

522 A (729 A/mm² @ 5 T)

Pup-3

Final Thoughts

Predictive/analysis FEM is working very well to understand our Bi-2212 coil development

The Overpressure Heat Treatment is yielding consistent results, albeit with an opportunity to improve heat treatments for large coil to achieve short-sample I_c values

All other manufacturing steps have been improved, such that coil pigtails provide a good benchmark to overall coil performance

This work is funded by the US DOE Office of High Energy Physics (OHEP) under DE-SC0010421 – amplified by the U.S. Magnet Development Program (MDP) and is supported in part by the NSF cooperative agreement DMR-1644779 and the state of Florida.