

Test Results and Analysis of a Single Pancake Validation Coil for a Cryogen-Free 23.5 T/ ϕ 15 mm REBCO Magnet

*Original Title:

Construction and Test Results of a Cryogen-Free 23.5-T REBCO Magnet Prototype towards a Tabletop 1-GHz Microcoil NMR Magnet

Dongkeun Park, Wooseung Lee, Yi Li, Yoonhyuck Choi, Juan Bascunan, and Yukikazu Iwasa

MIT – Francis Bitter Magnet Laboratory / Plasma Science and Fusion Center

Introduction to a Tabletop LHe-Free 1-GHz microcoil NMR Spectroscopy

Primary technical development goal in NMR magnet


"The higher field, the better NMR signals"

- → Increase NMR SENSITIVITY and RESOLUTION $\propto B_0^3$
- → Liquid Helium Free: Reliability, Cost, Safety

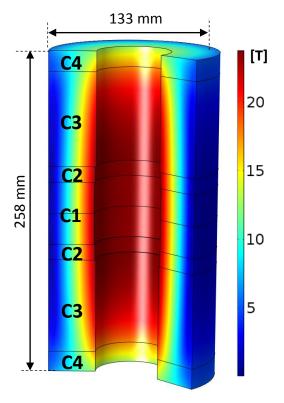
Microcoil NMR Spectroscopy

In *Microcoil* NMR probes (e.g. < φ1 mm *rf* coil),

Mass Sensitivity is 10–100X than in conventional one

Tabletop High-Field NMR Magnet

- **1-GHz** (23.5-T) NMR magnet with φ25-mm RT bore
- Merits: Cost and Installation Siting


LHe-Free HTS Magnet

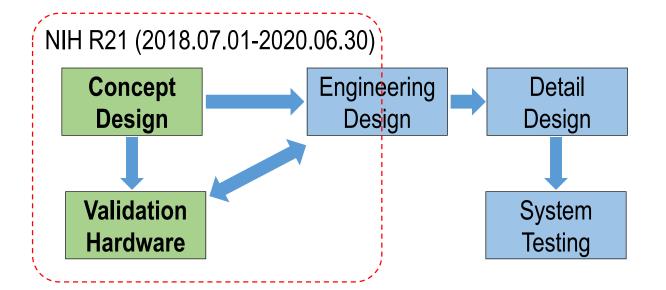
- All-REBCO composition
- Operation at 10 K
- No-Insulation winding

Compact Mechanically robust Self-protecting

Design Required Specification of 1-GHz Microcoil-NMR (Micro-1G) Magnet

Parameters	Tabletop LHe-Free Micro-1G	
Field Strength	23.5 T	
RT Bore Diameter	25 mm	
Region of Interest (ROI)	5 mm-DSV	
Homogeneity in ROI	<0.1 ppm	
Temporal Stability	<0.01 ppm/hr	
Shimming Method	Active (HTS and RT) and Passive (RT)	
Operating Temperature	>10 K	
5 Gauss Fringe Field	<1 m	
Shielding Method	Active Shielding	
Cooling Method	Cryo-cooled (No Cryogen)	
Vibration	Flexible Thermal Anchor, Anti-Vibration Pad	

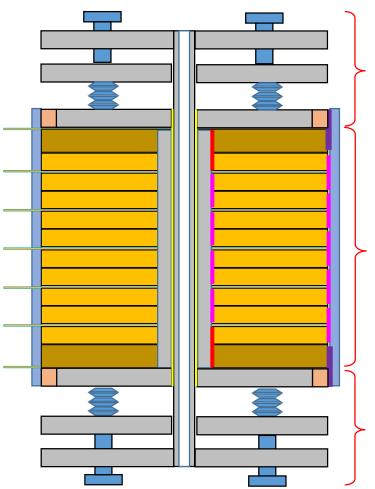
Harmonic error Terms @ 5-mm-DSV					
ZO	23.5	Tesla	1,000	MHz	
Z2				Hz/cm ²	
Z 4	0.00	ppm	1,201	Hz/cm ⁴	
Z 6	0.00	ppm	-1,666	Hz/cm ⁶	


<1st-cut unshielded Micro-1G magnet design presented in ASC2018>

Validation by a Prototype 23.5-T Magnet

What to *Expect*:

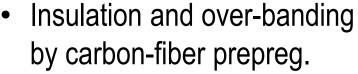
- *Conductor*/*Coil* parameters (*I_c*, field, stress, charging delay)
- Thermal dynamics: Charging, Quench
- Preliminary studies on reduction of SCF, Fringe field


Towards a *Tabletop* 1-GHz Microcoil NMR Magnet

Parameters	C2 – C11	C1 & C12
Conductor-W [mm]	6 mm	8 mm
Conductor-T [mm]	0.067 mm	0.066 mm
Spacer (Cooling Channel)	G10-Cu*-G10	
ID (2a ₁) [mm]	19.05	
OD (2a ₂) [mm]	107.49	106.83
# of Pancakes	10	2× 1
Turns per Pancake	660	665
Length per Pancake [m]	131.2	131.5
Total Length [km]	1.6	
Inductance	1.41 H	
I _{op} [A]	236	
T _{op} [K]	>10	
Hoop Stress (with WT+CD+EM)	<150 MPa (@ 50N Winding Tension)	
Estimated Min. I _c @ 10 K	>380	>420
Center Field @ I _{op}	23.5 T – SCF (3 T @ 10 K)	

<Prototype 23.5-T magnet design presented in ASC2018>

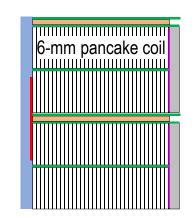
Main Features of Magnet Structure – Stack of Single Pancake Coils (SPC)

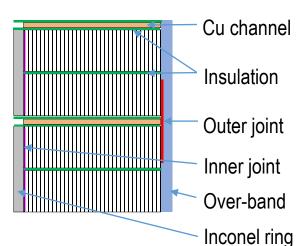


Preloading by Belleville washers.

For a coil's elastic behavior during cooling and operation

- Stack of SPCs with resistive joints.
- Conduction cooling channels.




Preloading by Belleville washers.

Inside joint

<Concept drawings of a mechanical structure>

Design Review taking into account the Screening Current Effect

- Screening Current affects: 1) Field (homogeneity, temporal stability) and 2) Stress (over-stress)
 - EM Design (Coil Optimization, Shimming)
 - **Current Sweep Reversal**

- Prevent from

Permanent Damage

Modeling by using a **T-A** Method* (1-D current density, J_{ϕ}) to compute screening current.

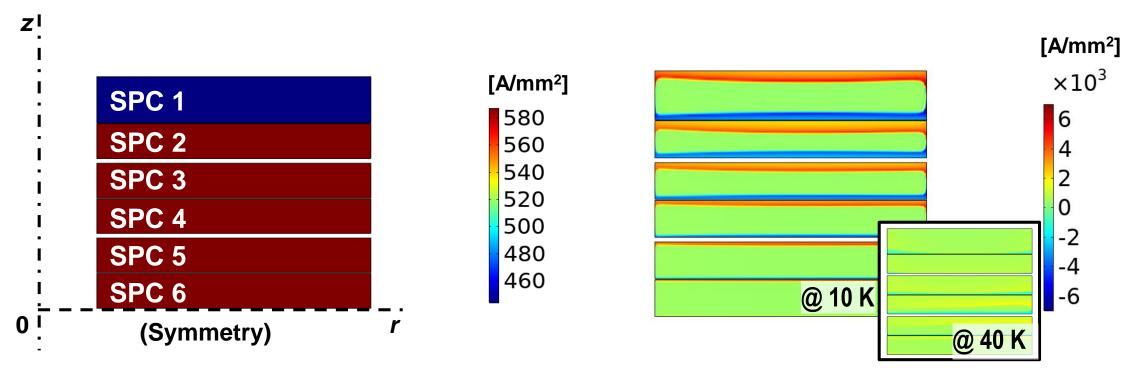
$$J = \nabla \times \mathbf{T}$$

$$\nabla \times \mathbf{E}(\mathbf{J}) = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\frac{dE_{\varphi}(J_{\varphi})}{dz} = -\frac{dB_{r}}{dt}$$

$$\mathbf{E}(\mathbf{J}) = E_{0} \left| \frac{J}{J_{c}} \right|^{n} \frac{\mathbf{J}}{|\mathbf{J}|}$$

$$J_{C}(B_{\parallel}, B_{\perp}) = \frac{J_{C0}}{\left(1 + \frac{\sqrt{(kB_{\parallel})^{2} + B_{\perp}^{2}}}{B_{C}}\right)^{b}}$$


Simulate Screening Current:

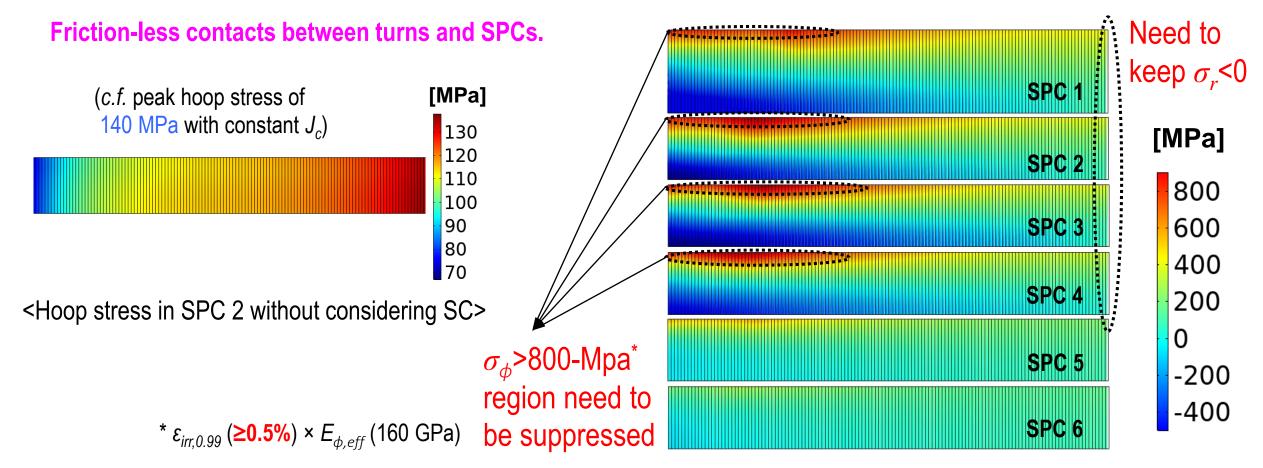
$$I_{op} = 0 \rightarrow 236 \text{ A} @ 10 \text{ K} (I_{c0} = \sim 3200 \text{ A}),$$

@ 40 K ($I_{c0} = \sim 1150 \text{ A}$).

*Yi Li, et al, "Magnetization and screening current in an 800 MHz (18.8 T) REBCO nuclear magnetic resonance insert magnet: experimental results and numerical analysis," Supercond. Sci. and Tech., vol. 32, no. 10, 105007, 2019.

Screening Current induced in a Prototype Magnet (Analysis)

- Distinguished screening currents in SPC 1-4.
- Screening currents suppressed with lower J_c (i.e. higher operating temperature)



<Current density of a 23.5-T prototype magnet: (left) constant Jc; (right) with screening current computation>

Screening Current inducing Stress (Analysis)

Peak Hoop Stress ~910 MPa @ SPC 2

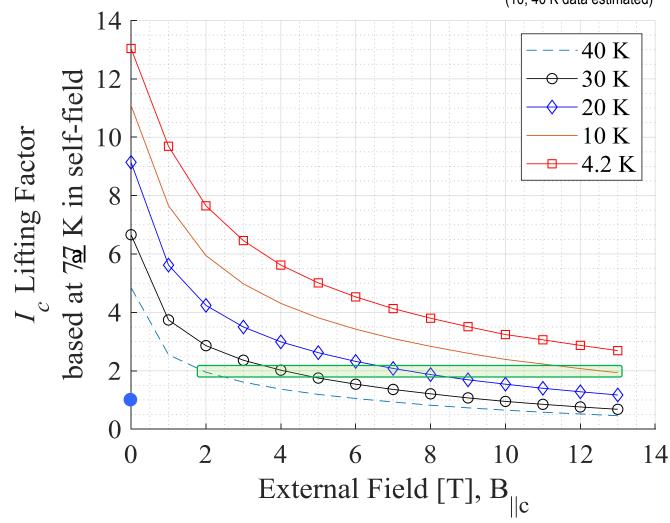
(Modeling conditions) Winding Tension 50 N; Cool-down to 10 K; Screening current charging 236 A @ 10 K;

<Hoop stress distribution with considering SC in the prototype magnet>

Screening Current Effect Mitigation Schemes

Increase Friction	Carbon fiber prepreg sheets hold the entire interfaces between SPCs strongly without Epoxy reach regions to reduce stresses induced by magnetic torques. Over-banding to keep σ_r <0 (comp)	ΔThermal Coefficient difference & Micro-Crack may be possible risk.	Strong friction between adjacent pancakes ($\lambda=0.2$) DP01 Upper DP03 Lower DP03 Lower DP03 Lower DP04 MPa Zero friction between adjacent pancakes ($\lambda=0$) DP04 Upper DP05 Lower DP06 Lower 940 MPa Zero friction between adjacent pancakes ($\lambda=0$) DP06 Upper One of the pancakes ($\lambda=0$) DP07 Upper One of the pancakes ($\lambda=0$) DP08 Lower One of the pancakes ($\lambda=0$) And DP09 Lower One of the pancakes ($\lambda=0$) And DP09 Lower One of the pancakes ($\lambda=0$) And DP09 Lower One of the pancakes ($\lambda=0$) DP09 Lower One of the pancakes ($\lambda=0$) And DP09 Lower One of the pancakes ($\lambda=0$) DP09 Lower One of the pancakes ($\lambda=0$) One of the pancakes ($\lambda=0$) One of the pancakes ($\lambda=0$)
Use Slit Conductor (multi-section)	Smaller size REBCO sections (8 mm vs. 4× 2 or 8× 1 mm) induce less screening current effects.	Coupling with copper will lead time delay to be temporally stabilized	Mon-Af-Po1.11-10 Applied Radial Field [T] 0.000 0.096 0.192 0.288 0.384 Measurement Simulation 0.00 0.000 0.088 1.76 2.64 3.52 Applied Axial Field [T]
Control Temperature	Temperature increase up to near T_{CS} , i.e. $I_{op} \approx I_c$, will reduce screening current. With noinsulation winding technique, this can be more reliable.	Different T_{CS} within entire coils. Difficult to control Temp. Gradient precisely.	Discuss in the Next Slides: SPC Validation Test and Analysis.

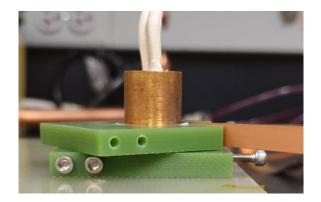
Single Pancake Coil (SPC) for Validation


* 4.2, 20, 30 K data provided by manufacturer, Shanghai Superconductor Technology Co., Ltd. (10, 40 K data estimated)

- Check:
 - 1) Inner joint and winding process;
 - 2) Charging delay time constant;
 - 3) Critical current

$$I_c \otimes B_{//c} = 13 \text{ T}, 10 \text{ K} \text{ (Proto 23.5-T)}$$

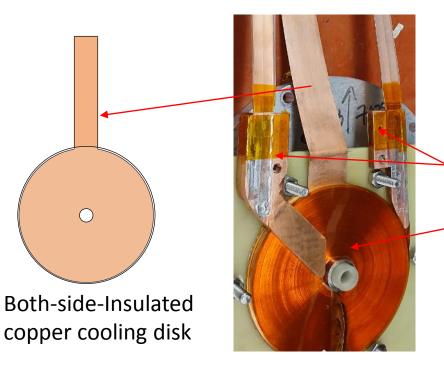
$$I_c @ B_{//c} = 2 \text{ T, } 40 \text{ K (SPC)}$$


4) Screening current effect vs. T_{op}

<Critical Current and Operating Temperature>

Winding (660-Turn SPC)

- Inside joint by using a 12-mm REBCO tape bridge between SPC and current lead (later between SPCs)
- Measured joint resistivity @ 77 K = $230 \text{ n}\Omega \cdot \text{cm}^2$
- SPC inductance 21.7 mH; Magnet constant: 16.2 mT/A → 4.13 T @ 255 A

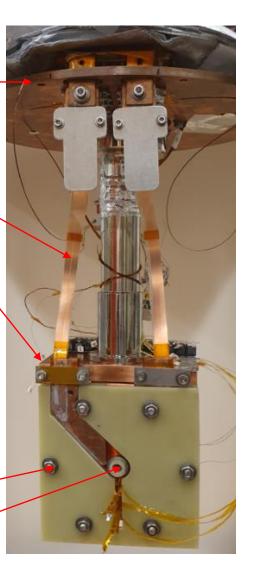


Conduction-Cooling Test Setup

- Insulated Cooling Channel attached on Bottom Surface of SPC with Cryogenic Vacuum Grease (Apiezon N)
- Copper Junctions (Terminals) for Thermal & Electrical Stabilization

Cryocooler 1st stage plate

HTS leads

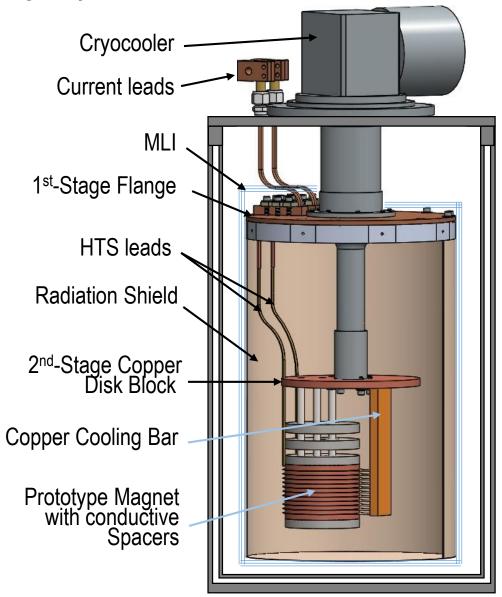

Cryocooler 2nd stage block

Copper junction

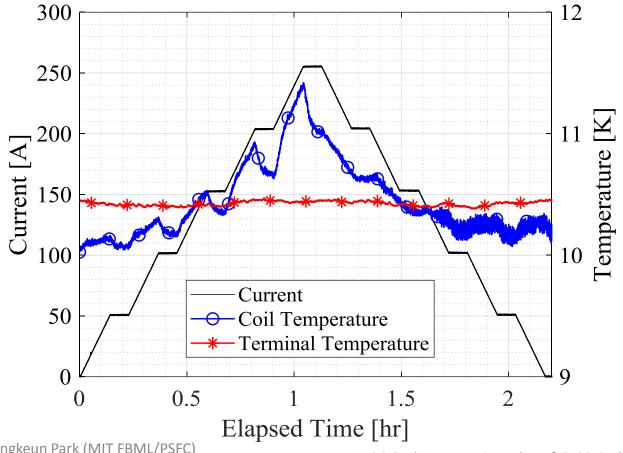
REBCO SPC

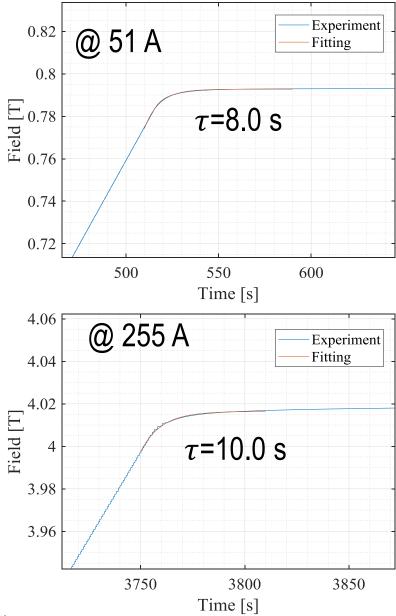
Pre-load bolting

Hall sensor

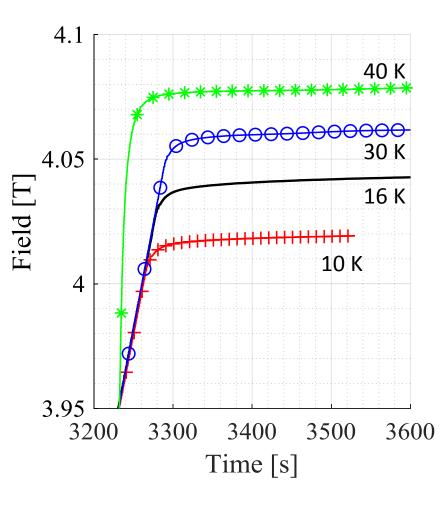

Cryostat System (will be also used for 23.5-T Prototype)

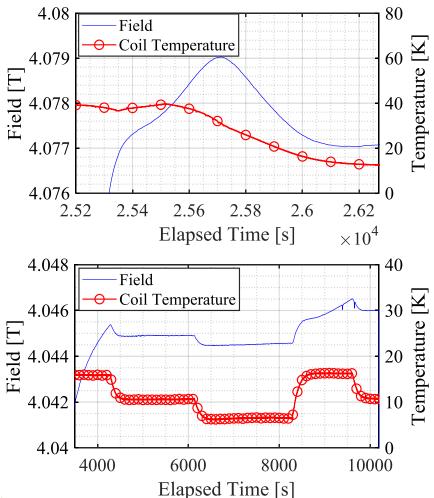
Cooling Power: 8 W @ 10 K

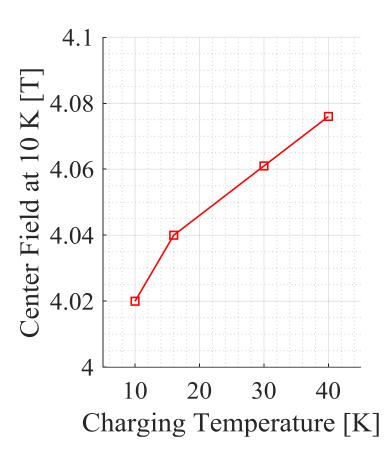




SPC Charging to 255 A @ 10 K

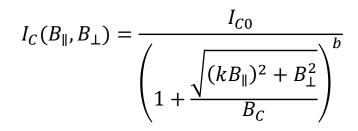

- Stable Coil & Terminal Temperature.
- Charging Delay Time Constant: 8 10 s $R_C = 2.17 - 2.71 \text{ m}\Omega \ (\rho_C = 31 - 39 \ \mu\Omega \cdot \text{cm}^2)$

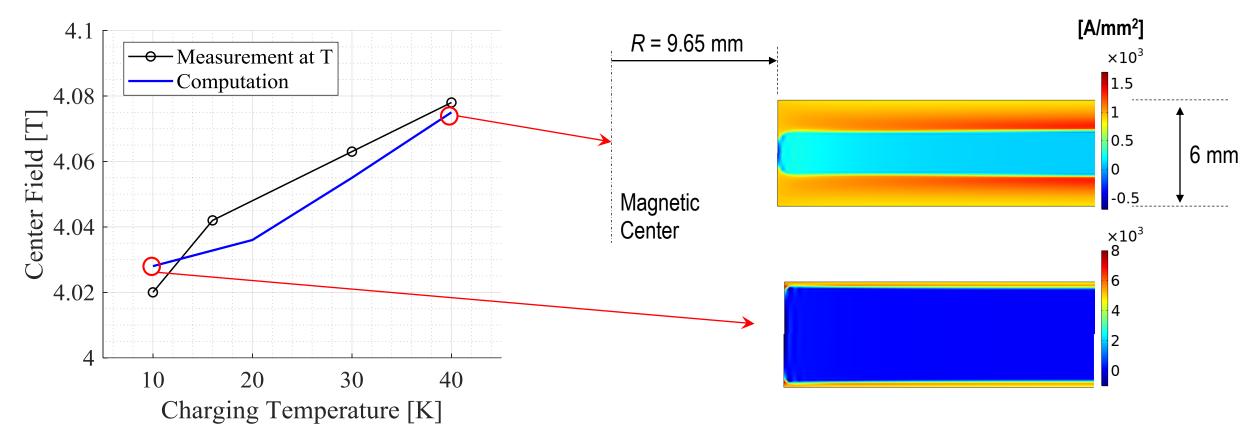




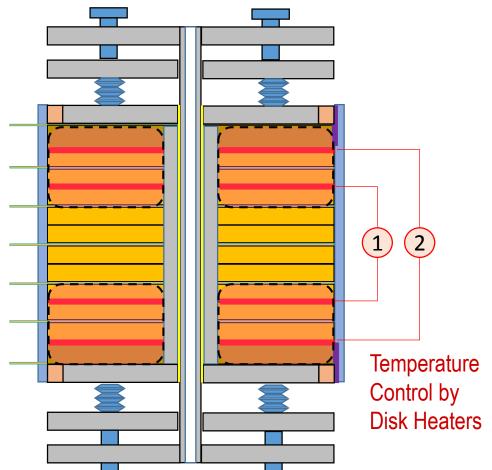
SPC Field Charged to 255 A in Different Temperature

- Test Sequence: Charging Up to 255 A @ TEMPERATURE → 10 K.
- Measure Center Field.





SPC Screening Current Analysis


- Greatest screening current at lower temperature (higher J_c).
- Screening current strongly depending on $J_c(T, B, \theta)$.

<(Left) center field vs. charging temperature; (Right) current density distribution>

Discussion on Charging and Operating Temperature

- Upper/Lower Coils may be heated up close to *T_{cs}* by specially designed heaters to minimize the screening current effects during charging:
 - ✓ Thin Disk Shaped, Meander or Bifilar;
 - ✓ Different Power Distribution(outer high, inner low)
- Heaters may be shut off after reaching stable operation.
- Expect to Mitigate the Screening Current inducing Over-Stress

Conclusion

- Single Pancake Validation Coil is successfully operated at 255 A in 10 40 K.
- Screening Current effects are Analyzed and Tested in Single Pancake Coil.
 - ✓ One Way to Suppress the Screening Current and thus possible Over-Stress is to charge REBCO Magnets (or only Outer Pancake coils) in Temperature T_{CS} , i.e. $I_{op} \approx I_c$.
- Cryogen-Free 23.5-T (1-GHz)/φ13-mm all-REBCO Magnet under Construction (2020).
- MIT FBML/PSFC will complete validation and electromagnetic design for a Tabletop LHe-Free 1-GHz Microcoil NMR Magnet in 2020.