

"The conceptual design of the DTT superconducting magnet system"

Aldo Di Zenobio

on behalf of the DTT Magnet System design team:

L. Muzzi, S. Turtù, L. Affinito, A. Anemona, V. Corato, C. Fiamozzi Zignani, L. Giannini, G. Messina, L. Morici, R. Righetti, G. Romanelli, L. Zoboli and A. della Corte – ENEA

R. Bonifetto, L. Savoldi, A. Zappatore and R. Zanino – Politecnico di Torino (NEMO Group)

and DTT design contributors:

see Divertor Tokamak Test facility – Interim Design Report; ed. by R. Martone, R. Albanese, F. Crisanti, P. Martin and A. Pizzuto; ISBN: 978-88-8286-378-4

Background & Project Objectives

EU Research Roadmap to Fusion Energy

(1.2 - Sept. 2018)

How to face the challenges –

the missions for the realisation of fusion

Mission 1 - Plasma regimes of operation

Mission 2 - Heat-exhaust systems

Mission 3 - Neutron tolerant materials

Mission 4 – Tritium self-sufficiency

Mission 5 – Implementation of the int

safety features of fusion

Mission 6 - Integrated DEMO design and

system development

Mission 7 - Competitive cost of electricity

Mission 8 - Stellarator

M2. Heat-exhaust systems:

Demonstrate an integrated approach that can handle the large power leaving ITER and DEMO plasmas.

DTT: Divertor Tokamak Test Facility project

General objective: create a research infrastructure addressed to the solution of the power exhaust issues in view of DEMO.

Test Divertor alternative solutions
& improve experimental
knowledge in the PEX scientific
area

- Replace Divertor by Remote Handling
- High Magnetic System flexibility to Implement Various Plasma configurations

DTT: Divertor Tokamak Test Facility project

Max. plasma current: 5.5 MA

Inductive operation with a max high β flat top up to 50~s

Heating system providing 45 MW (target)

(20-30 MW ECRH, 3-9 MW ICRH, 7-15 MW NNBI)

DTT main parameters

R(m)/a(m)	2.14/0.65 (SN/DN)
Α	3.3 (SN/DN)
I _p (MA)	5.5
B _T (T)	6.0 @ R ₀
Neutron production rate (n/s)	1.2-1.5 10 ¹⁷ DD + 1% DT
Maximum dwell time (s)	3′600
Nominal repetition time after disruption (s)	3′600
Number of shots per day	5-10
Days of operation per year	100
Years of operation	25
Number of max shots	25′000

A. Di Zenobio- The DT see Divertor Tokamak Test facility – Interim Design Report; ISBN: 978-88-8286-378-4

DTT: Divertor Tokamak Test Facility project

The facility will offer **high flexibility** to test the candidate divertor concepts and to probe different magnetic (i.e. plasma) topologies

Figure I.4: Single Null (5.5 MA), Double Null (5 MA), Snow Flake (4.5 MA), X-Divertor (4.5 MA), Negative Triangularity (5 MA) and Double Super-X (3 MA) configurations at flat top. The DTT magnetic system is also compatible with a 5 MA long leg configuration. Negative Triangularity and Double Super-X require a dedicated divertor.

Overview of the Superconducting Magnet System

DTT Magnet System Overview

18 TF coils:

Nb₃Sn CICC: 44.8 kA - 11.9 T

providing **6.0 T** over plasma major

radius (**2.14 m**)

6 CS modules (indipendently fed)

Nb₃Sn CICC: 29 kA - 13.4 T

providing **16.4 Weber** magnetic flux

for plasma initiation at breakdown

6 PF coils

Nb₃Sn (PF1 & PF6) CICC: 28.3 kA - 9.1 T

NbTi (PF2 to PF5) CICC: 28.6 kA - 5.4 T

Identical in pairs to guarantee full

top/down symmetry

18 TF coils:

Nb₃Sn CICC: 44.8 KA – 11.9 T providing 6.0 T over plasma major

radius (2.14 m)

6 CS modules (indipendently fed)

Nb₃Sn CICC: 29 KA - 13.4 T

providing **16.4 Weber** magnetic flux for plasma initiation at breakdown

6 PF coils

Nb₃Sn (PF1 & PF6) CICC: 28.3 KA - 9.1 T

NbTi (PF2 to PF5) CICC: 28.6 KA - 5.4 T

Identical in pairs to guarantee full top/down symmetry

18 TF coils:

Nb₃Sn CICC: 44.8 KA – 11.9 T providing 6.0 T over plasma major radius (2.14 m)

6 CS modules (indipendently fed)

Nb₃Sn CICC: 29 KA – 13.4 T providing 16.4 Weber magnetic flux for plasma initiation at breakdown

6 PF coils

Nb₃Sn (PF1 & PF6) CICC: 28.3 KA – 9.1 T NbTi (PF2 to PF5) CICC: 28.6 KA – 5.4 T Identical in pairs to guarantee full

top/down symmetry

18 TF coils:

Nb₃Sn CICC: 44.8 KA – 11.9 T providing 6.0 T over plasma major radius (2.14 m)

6 CS modules (indipendently fed)

Nb₃Sn CICC: 29 KA – 13.4 T providing 16.4 Weber magnetic flux for plasma initiation at breakdown

6 PF coils

 Nb_3Sn (PF1 & PF6) CICC: 28.3 KA - 9.1 T NbTi (PF2 to PF5) CICC: 28.6 KA - 5.4 T

Identical in pairs to guarantee full top/down symmetry

SC coils: rationale behind design choices

Superconducting coils design rationale

The design of the DTT superconducting coils in terms of:

- Performance of the superconducting wires (strands)
- Features of the Cable-in-Conduit Conductors (CICC)
- Coil (winding) layout and technologies

is based on

a large experience gained by the scientific fusion community and by industry mainly with the 3 large SC tokamaks

ITER, JT-60SA and K-STAR

and with the high field hybrid magnets of

NHFML, HFML & HZB

Superconducting coils design rationale

DTT CICC design is based on the results collected within a number of programs:

JT-60SA TF

sample for K-DEMO

Present reference CICC solution based on:

- 1. rectangular (or square) geometry, with constant thickness steel jacket
- 2. very short twist pitch cable OR long twist pitch & low Void Fraction
- 3. Assumption: $\varepsilon_{eff} = -0.65\%$

Design verification with dedicated experimental tests (*DC properties with e.m. and thermal cycling + AC losses*) is foreseen in the next months, before giving green light to conductor production.

15

Toroidal Field coils

Toroidal Field Coils – Winding Pack

~ 30 tons

Total conductor length (18 coils): ~ 19 km

Total Nb₃Sn strand ordered: ~ 55 tons ~ 15.7 tons

Total Cu (Cr coated) strand ordered:

Total 316LN jacket section weight:

Operative current:44.8kA

B_{peak}: **11.9 T**

Double pancake-winding: 3 rDP; 2 sDP; 80 turns

Max. hydraulic length: 110 m

 $\Delta T_{\text{margin}} > 1.4 \text{ K}$

Turn insulation: Fiber-glass + resin

Wind → React → Insulation → Impregnation

Jacket thickness: 2.0 mm

VF: 26.4%

Nb₃Sn strands: 504

Cu segregated strands: 144

Nb₃Sn strand: 0.82mm diam., Cu/nonCu: 1, RRR=100

Cu segregated strand: 0.82mm diam., RRR > 300

Cu+2Nb₃Sn)+(1Cu+2Nb₃Sn)+3Nb₃Sn]*3*4*6ong Twist Pitch)

.05mm thick, overlap 30%

Toroidal Field Coils – case & supports

Simmetric shape of TF coils to allow DN and other possible simmetric scenarios (wrt equatorial plane). All the magnet system weight loads the TF coils. Structures are mainly based on machining of 316L(N) forged sectors.

(Mon-Mo-Or1-02), today at 11.45am

Toroidal Field Coils - analyses

Goodman stress

[Pa] < 450MPa

Iongitudinal

strain < 0.4%

	T _{max,cond} [K]	T _{max,jk} [K]	p _{max} [bar]			
ΔT_{marg}^{min}	85	75	10			
ΔT_{marg}^{max}	83	73	9.2			
ITER req.	<250 (dry)	<150	<250			

Central Solenoid

Central Solenoid modules

Requirements:

- 6 independently fed modules (flexibility)
- Magnetic flux > 16.4 Weber
- Limited room availability (high J_F values)
- Designed to foresee future installation of an insert coil (HTS)

Design choices:

- 6 identical modules
- Layer wound (2 conductor grades)
- Optimized concepts for inter-grade joints and terminations (small curvature radii, small gap between TF and CS,..)

Central Solenoid - analyses

Thermal-Hydraulics

Poloidal Field coils

Poloidal Field Coils

6 independent coils

On PF1&6 max B around 9T \rightarrow Nb₃Sn strands

Designed identical in pairs for symmetry

	PF1/6	PF2/5	PF3/4					
Bmax (T) (input data)	9.1	4.2	5.3					
R (mm)	1416	3068	4335					
±ΔR (mm)	542	302	422					
Z (mm)	±2760	±2534	±1015					
±ΔΖ (mm)	590.4	516.8	452.2					
Ground Insulation	5mm							
# turns (radial)	20	10	14					
# turns (vertical)	18	16	14					
Total N turns	360	160	196					
I _{op} max (kA)	28.3	27.1	28.6					
ΔT _{margin} (T _{op} : 4.5K)	1.8	1.9	1.7					
L (H)	0.454	0.298	0.690					
V _{max} (V)	2150	1350	3290					
Weight (tons)	15	16	28					
delay / discharge constant		1.5 s / 6 s						

Poloidal Field Coils

Less room is available for joints & terminations of PF1/6

→ 1 support each 2 TF coils

For more details: **S. Turtù (Wed-Mo-Po3.01-01 [1])**, Wednesday poster session

Poloidal Field Coils - analyses

For more details:
L. Zoboli (Wed-Mo-Po3.01-04
[4]), Wednesday
1.45pm poster
session

A. Di Zenobio- The DTT Magnet System – MT26 Conferenoe 2

Thermal-Hydraulics

counter-current He flow in adjacent pancakes

Target ΔT_{margin} > 1.7K is reached in each coil (AC losses values still to be experimentally verified)

Side projects/activities

CS HTS insert coil

29

DTT as a test-bed for **next generation fusion magnets**

(Mon-Mo-Or3.06)

today 12.30

Cold test facility

→ ENEA decided to create a new infrastructure in Frascati

18 TF coils + 7 CS modules + PF1 & 6 will be tested at 4.5K

Current leads, Power Supply & Quench protection prototypes will be used for cold tests and thus qualified against real conditions

This activity is in addition to the DTT budget (ENEA's investement only)

Adaptation of the Superconductivity lab to host the new facility is already started

Planning & current status

DTT Project Planning

1/3 of the machine must be completed by 2022 (6 TFCs, 3 VV sectors, cryostat base, main hall, ...)

Commissioning of the machine shall be completed within 2025

me attività 🔻	Duration 🕶	Start 🔻	Finish ▼	Predecessors	H1 H2	H1	H2 H1	H2	H1 F	12 H1	H2 H1	H2 H1	H2 H1	
TT-project	1874 d?	Fri 21/12/18	Wed 25/02/26			-								
Strands Market Survey launched	0 d	Fri 21/12/18	Fri 21/12/18			◆ 21/12								
DRM-01	0 d	Thu 10/01/19	Thu 10/01/19		ار	1 0/01								
△ PROJECT MILESTONES	1550 d	Mon 30/12/19	Fri 05/12/25				_							=
▷ IDTT.M1 - DEMONSTRATION THAT REMAINING FABRICATION WILL BE COMPLETED AT LOW RISK	320 d	Wed 13/10/21	Wed 04/01/23								_			
▶ IDTT.M2 - DEMONSTRATION THAT ASSEMBLY WILL BE COMPLETED AT LOW RISK	140 d	Thu 09/06/22	Wed 21/12/22							_				
▶ IDTT.M3 - DEMONSTRATION THAT MACHINE CAN BE COMMISSIONED SUCCESSFULLY	0 d	Wed 09/06/21	Wed 09/06/21						♦ 09/0	6				
IDTT.M4 - DEMONSTRATION THAT THE FINANCIAL AND HUMAN RESOURCES ARE AVAILABLE FOR PROJECT COMPLETION	0 mo	Fri 30/12/22	Fri 30/12/22								30/12			
COM.MI - IDTT FINAL DESIGN CONSISTEN WITH THE REQUIREMENTS FOR TESTING ALTERNATE EXHAUST COONCEPTS BASED ON THE KNOWLEDGE AT THE TIME	0 mo	Mon 30/12/19	Mon 30/12/19				→ 30/1:	2						
COM.M2 - DECISION ON THE FIRST IDTT DIVERTOR	0 mo	Fri 30/12/22	Fri 30/12/22								30/12			
COM.M3 - ASSESSMENT OF THE INTERFACES AND EXHAUST INFRASTRUCTURE AND DIAGNOSTIC OPPORTUNITIES IN IDTT	0 mo	Fri 30/12/22	Fri 30/12/22								30/12			
PRJ-MS-01 START OF INTEGRATED COMMISSIONING	0 d	Mon 30/06/25	Mon 30/06/25	949SS									•	, :
PRJ-MS-02 FIRST PLASMA	0 mo	Fri 05/12/25	Fri 05/12/25	949FS+2 d										
DOI - PHY - PHYSICS	240 d	Thu 10/01/19	Wed 11/12/19	3SS		•								
△ 02 - MAG - MAGNETS	1514 d?	Fri 21/12/18	Wed 09/10/24	288	4	_							_	
MAG-01 TFC	1345 d?	Fri 21/12/18	Thu 15/02/24			•								
MAG-02 CS COILS	1360 d	Thu 10/01/19	Wed 27/03/24	3SS	Н	•								
MAG-03 PF COILS	1480 d	Thu 10/01/19	Wed 11/09/24	3SS	Н	•							-	
MAG-04 CURRENT LEADS & CL BOXES	1410 d	Thu 10/01/19	Wed 05/06/24	388	Н	•								
MAG-05 STRANDS & CONDUCTORS	1214 d	Fri 21/12/18	Wed 16/08/23			•						y		
MAG-06 SC feeders	1000 d	Thu 10/01/19	Wed 09/11/22	388	4	,								
MAG-07 In Vessel Coil CONDUCTORS	1180 d	Thu 10/01/19	Wed 19/07/23	3SS	H	•			-					
MAG-08 QUENCH PRTECTION SYSTEM	700 d	Fri 21/12/18	Thu 26/08/21		,	_								
MAG-09 COLD TEST FACILITY	1514 d	Fri 21/12/18	Wed 09/10/24		-	_							—	
DOS - MEC - MECHANICAL STRUCTURES	1730 d	Thu 10/01/19	Wed 27/08/25	3SS	H	•			1					=
▶ 04 - HCD - HEATING AND CURRENT DRIVE	1860 d	Thu 10/01/19	Wed 25/02/26	3SS	4	•								_
D 05 - AUXILIARY PLANT SYSTEMS	1440 d	Thu 10/01/19	Wed 17/07/24	3SS	Ч	•							,	
	1400 d	Thu 10/01/19	Wed 22/05/24	388	H	•								
	1680 d	Thu 10/01/19	Wed 18/06/25	388	4	,——								
DOB - DCS DIAGNOSTICS AND CONTROL SYSTEMS	1619 d	Thu 10/01/19	Tue 25/03/25	3SS	4	•								
▷ 09 - SLE SYSTEM LEVEL ENGINEERING	1800 d?	Thu 10/01/19	Wed 03/12/25	3SS	կ	,								_

DTT Project Planning

- The project has been officially **financed and kicked-off.** The machine is being built at the **Frascati**Research Center of **ENEA** (Italy), where FTU is currently being de-commissioned and disassembled
- > DTT Scrl legal entity (to manage DTT procurement and operation) has been settled
- To accomplish the tight schedule the short term planning is:
- Strand supply partly assigned (≈ 77 tons of Nb₃Sn, ≈ 27 tons of NbTi, ≈ 50 tons of Cu)
- 10/2019: Conductor procurement tender
- Within the end of 2019: TF Winding Pack & Integration TF case and structures (2 different tenders)
- Early 2020: PF coils / CS coils / SC current leads & Feeders Tenders

THANKS FOR YOUR ATTENTION!

Grazie!

Backup slides

Poloidal Field Coils

6 independent coils

On PF1&6 max B around 9T \rightarrow Nb₃Sn strands

Designed identical in pairs for symmetry

Conductor	PF1/6	PF2/5	PF3/4					
Radial Ext. Dim. (mm)	23.4	26.4	26.4					
Vertical Ext. Dim. (mm)	28.2	27.7	27.7					
Jacket thickness (mm)	3.0	3.0	3.0					
Inner Corner Radius (mm)	3.5	3.5	3.5					
Central Channel (OD/ID; mm)	7/5	7/5	7/5					
Inter-turn insulation (mm)	turn insulation should consist of layers of interleaved kapton and fiberglass. 1.8mm turn insulation thickness is conservative, to have a big margin making a turn-to-turn and DP-to-DP insulation fault very unlikely analyses to evaluate voltage values in normal and faulted conditions are on going							
# SC strands (0.82mm)	180 (Nb ₃ Sn)	162 (NbTi)	324 (NbTi)					
Strand Cu no-Cu ratio	1	1.9	1.9					
# Cu strands (0.82mm)	216	324	162					
Total strand number	396	486	486					
Cabling sequence	[2x(2sc+Cu)+(sc+2Cu)]x(6+Cucore)x6 Cu core: 12 strand	(2Cu+1SC)x3x3x3x6	(1Cu+2SC)x3x3x3x6					
Void fraction	29.9% (*)	30.2%	30.2%					
LBO wrapping	(0.05 ± 0.01) mm x 12 mm, open area 50%, SS							
external wrapping	(0.05 \pm 0.01) mm x 40mm, 50% overlapping, SS							

DTT wrt other superconducting Tokamaks

Central Solenoid modules

ENEA-TRATOS Aluminum slotted Core HTS CICC

Most recent concept

External high-strength Aluminum-alloy jacket.

L = 36 mm

6 slots for twisted stack of s.c. tapes

30 – 35 kA current in 18 T – 20 T field (to be tested)

S.C. components design rationale: STRANDS

- Nb₃Sn performance depends (strongly) on strain state and sensitivity is hard to predict;
- Nb₃Sn wire inside Cable-in-Conduit conductors (CICC) is subject to strain:

S.C. components design rationale: CICC

Uglietti_SUST 2018

