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See

https://www.theva.com/video-zum-abschluss-des-ecoswing-projekts/

Or

https://www.youtube.com/watch?v=NxMkZHyM9UQ

The EcoSwing Story
Publications (published):
• Song et al.: Designing and Basic Experimental Validation of the 

World's First MW-Class Direct-Drive Superconducting Wind 
Turbine Generator, IEEE Transactions on Energy Conversion
DOI: 10.1109/TEC.2019.2927307

• Winkler et al.: The EcoSwing Project, IOP conf. series: Mat. Sc 
Eng. DOI:10.1088/1757-899X/502/1/012004

• Slides on AC loss calculation (in German):
https://elenia.tubs.de/fileadmin/content/sls/9sls/04_Kra

use.pdf

Publications (submitted)
• SUST: Design and in-field testing of world's first ReBCO rotor 

for a 3.6 MW wind generator 
• IEEE TEC:

Ground Testing of the World's First MW-Class Direct-Drive 
Superconducting Wind Turbine Generator

• Applied Energy:
Commissioning of the World's First MW-Class Direct-Drive 
Superconducting Generator on a Wind Turbine 

THE ECOSWING STORY.mp4
https://www.theva.com/video-zum-abschluss-des-ecoswing-projekts/
https://www.youtube.com/watch?v=NxMkZHyM9UQ
https://doi.org/10.1109/TEC.2019.2927307


• Overview on project

• Design, component testing, assembly

• Ground testing in Bremerhaven, Germany

• Installation and operation on wind turbine in Thyboron, 
Denmark

• Summary
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Superconductivity has matured sufficiently that 
we can follow an ambitious plan:

• Design, develop and manufacture a full-scale 
multi-megawatt superconducting wind 
generator

• Install this superconducting drive train on an 
existing modern wind turbine in Thyborøn, 
Denmark, replace existing PM generator
(3 MW Class, 14 rpm, 128 m rotor)

• Prove that a superconducting drive train is  
lighter, smaller and cost-competitive.

• Start Date: 2015-03-01
End Date: 2019-04-30

Our ambitions
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Elements of the EcoSwing
superconductive generator

Rotor

Self sustaining 
thermal insulation 

vacuum

High power density 
stator with copper 

coils

Coldhead
Working gas pipes

+ compressors in nacelle

Cryocooling

Superconductor 
coils

Cold iron yoke -243°C



• Decreased diameter from 
5.4 m (PM generator) to 4 m

• Built EcoSwing generator: 
25 % weight reduction 
compared to PM generator 
of same diameter

• Commercial design: 
40% weight reduction 
compared to 
PM generator.

EcoSwing design

7

3.6 MW

Conventional
PM generator

Superconducting
generator

5.4 m
4.0 m



• Qualification of superconductive 
joints

• Validation of magnetic properties

• Validation of copper RRR

Qualification of Materials and Procedures
Just a few examples…

Joint made by THEVA, the overlap area is highlighted by yellow dashes.
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• Qualification of lubricants 
and adhesives

• Qualification of structural 
materials (w/ TNO Delft)

• Qualification of getters, 
sealants, procedure for 
affixing MLI…

Qualification of Materials and Procedures
Just a few examples…
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TPL2100

12 mm

HTS full scale coils

Main characteristics

• Used wire: Standard THEVA Pro-Line HTS 
conductor with 100 µm Copper lamination 

• Each coil contains more than 500 m of HTS wire 
and has about 200 turns

• Insulated design, 12 µm thin insulation foil 

• Coils are 1.4 m long, double pancake

• Potted in resin

• Operating temperature < 30 K, 
conduction cooled 

EcoSwing rotor coil

1.4 m
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• Performance better than expected

• Nearly linear Ic(T)

→ Type test passed on first attempt

Type test and routine test 
of HTS coils 

11

Routine testing with 4 coils
Type testing first coil

35K



• Fast and efficient series testing 
in liquid nitrogen (77K, -196°C)

• All coils exceeded performance 
criteria 
(120 A)

• Coil production yield: 

• Overall 89% (45)

• Second half: 100% (20)

Successful small series 
production of HTS coils!

77K routine testing of coils

Simple setup

to test in liquid nitrogen
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Test result: V-I curves 77K



Assembly of a superconducting
generator
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coil mounting

30 layers of MLI

stator coils stator mounting main shaft

stator flanges

mounted generator



Main components of cooling
system on rotor
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• Pure conduction cooling concept

• Cu-OFE with defined and tested RRR value 

• Contacts with tested heat flow resistance

• Monitoring of temperatures: 90 sensors (rotor alone)

T sensor

Flexible connections Cu cold bus

SUS

SUS

Cu

Cu

Yoke

HTS

HTS coil assembly Cryocooler



Cooling system
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Concept:
• Conduction cooling with rotating GM cryocoolers
• Tested off the shelf components 
• New:  rotational He gas (warm) feedthrough

solution to exchange cold heads with cold rotor

• SRDK-500B  cryocoolers

• F-70 compressors.

30K 80/95 W

Power (50/60Hz) 7.5/9.0 kW

Maintenance
expected every

18.000 hrs

Orientational

Dependence
<30%

standstill

rotating

• At standstill orientational dependence 

of cryocooling is detectable

• Rotation leads to homogenization of 

temperatures 

20 K

12 K



Ground testing at IWES
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Steps during ground testing at 

DyNaLab of IWES in Bremerhaven:

• Mounting hub adaptation and 

generator

• Rotor cool down

• Excitation of the rotor at standstill

• Rotation

• Short circuit test

• No load test

• Power generation



• Cooling down period faster then calculated 
14 days compared to 18 days 

• Cooling power exceeds expectations

• Overall temperature level was lower than 
anticipated

• Thermal design conservative

• Cryostat vacuum better then expected

• 2.7∙10-10 bar and self-sustaining

• No pump required during operation

Cryogenic system fulfilled all 
specifications!

Lifting 

Period

Faster then 

computed

Lower then 

computed

1st cool down before ground test
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14 days

-250°C

20°C



Excitation of HTS field windings
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First excitation of HTS field winding at standstill in Bremerhaven

Excitation up to 275 A

• Debugging of control and QD system

• Optimization of filter constants and threshold 

values

• Test of shutoff safety chain



• Stator voltage reached 
nominal at 260 A rotor 
current

• The no-load curve does not 
show any unexpected 
behavior and is better than 
the 2D-FEM calculated one.

• With full 3D FEM including 
end windings no-load curve 
was fully reproduced.
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Some detail findings
No load tests
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But not everything went as expected…….



Quench of one coil
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During further increase of excitation 

current one coil quenched

- voltage rise detected by QD system 

- automatic shut down

- temperature rise in quenched coil of 

up to 4.5 K 

temperature rise 

prior to quench 

temp. sensor

attached to Cu cold 

plate 

defect

temperature rise 

due to dI/dt



Analysis of quench
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Detailed analysis of temperatures and voltages

→ Only one coil with defect already 

before the quench

After the quench

→ higher resistance in quenched coil (1.7 

m)

No damage to other coils

→ QD system prevented further damage 

Possible reasons:

- Coil only tested in LN2 

→ conditions (T, B) differ from final 

operation conditions

→Damaged wire with local Ic drop not 

detected

- Insulation failure leading to local heating

- Damage of coil after the QC test
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Some detail findings 
Partial power test with defect coil
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EcoSwing: Power of 1 Converter (of 4) 

P (1/4 Converter), 14.5 rpm [W]

Commissioning with converter successful and reached 1 MW

Commutation angle found, dq axis decoupled.

Exitation current 130 A

1 MW power generation

with defect coil!



Repair of the rotor
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Repair steps

- Transport of the generator to suitable place 

(cranes, welding..)

- rotor and stator separated 

- vacuum recipient opened by cutting open 

the welding seam

- coil exchanged

o MLI, el. + thermal connections, screws…

- Reassemble, re-weld, evacuation

Excitation test at standstill: 380 A (8h)  ✓

Excitation for operation:  330 A ✓
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But did we learn something?



Learnings
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Improvements in QC

❑ QC testing should mimic the operational 

stress level as good as possible

→ HTS tape should be tested with similar 

I/Ic even if at different T and B conditions 

❑ Insulation (turn to turn, layer to layer, coil to 

ground) has to be included in QC even if 

there is very little voltage drop at normal 

conditions

Positive findings

❑ QD system worked correctly

❑ Operation with derated excitation (39%)  

is possible even with a defect HTS coil

❑ HTS rotors can be repaired



Commissioning on turbine
in Thyborøn, Denmark
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Commissioning on the wind turbine: 

• Preinstallation of components

• Mounting of generator, converter, water 

cooling, DAQ, … 

• Connection to PLC of wind turbine

• Safety testing

• Rotor cool down

• Excitation of the rotor

• No load rotation

• Stepwise increase to full power production



2nd cool down on turbine
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HTS coils

Cold heads

12 days from 28.9.2018 until 9.10.2018

Cold head

at current

feed trough

300 K

0 K
~20 K

pressure



Power generation and cooling
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2 MW test run

255 A excitation
Experience with cooling system

• Off the shelf components 
worked as specified

• Rotation of cryocoolers is no 
problem (15 rpm)

• Conduction cooling is reliable

• Influence of power generation 
on temperatures is small
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Power 
production
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• Stable operation at 2 MW power level in unattended
mode

• 2 weeks of continuous operation (remotely
monitored)

• Short circuit in the converter system at 3 MW 
prevented reaching final 3.6 MW 

• Resonance in generator-tower cables-inverter 
- conventional technology

• No problems in the rotor, no doubt that 3.6 MW 
are possible

In total power was fed into the grid for 650h!

Many Danish households could claim 

"powered by superconductivity".

3 MW test run

330 A excitation



• The world’s first superconducting generator was successfully built and operated on a wind 
turbine. 

• This in general demonstrates
• compact and simple use of superconductors,

• superconductor technology and cryocooling is stable and robust.

• Superconducting generators can be
• much smaller than present day “state of the art” generator  (Ecoswing: 5.4 m → 4 m )

• much lighter than present day “state of the art” generator (- 50 %)

• The same technology can be applied to other slow rotating machines
• Motors and generators for ship propulsion

• Hydro power generators
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Conclusions
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Thank you!

THE ECOSWING STORY.mp4

