

Phase structure and superconducting properties of RHQT Nb₃Al wires fabricated by static and dynamic rapid heating

Zhou YU¹, Lian Xia¹, Changkun Yang¹, Xiaguang Sun¹, Yongliang Chen¹, Yong Zhang¹, Xifeng Pan², Guo Yan², Yong Feng², Yong Zhao^{1,3}

1. Superconductivity and New Energy R&D Center (SNERDC), Southwest Jiaotong University, Chengdu, Sichuan 610031, China.

—**-** 64A

→ 71A

0.00 -

6 -0.15 -

-0.20

-0.35

2. College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117, China. 3. Western Superconducting Technologies (WST) Co., Ltd, Xi'an 710018, China.

MT26-Tue-Mo-Po2.13-09 [116]

Introduction

- Nb₃Al prohibits higher T_c (18.9 K), higher B_{c2} (29.5 T@4.2 K) and better stressstrain tolerance than Nb₃Sn.
- Bronze process cannot fabricate Nb₃Al phase for non-superconducting of Nb-Al-Cu compounds, stoichiometric Nb₃Al can only be formed beyond 1900 °C.
- Rapid heating, quenching and transformation (RHQT) process can fabricate stoichiometric Nb₃Al with fine grain size, exhibiting excellent J_c over whole magnetic fields.
- Right now, it is still lack of the comparison between phase structure and superconducting properties of RHQT Nb₃Al wires fabricated by static and dynamic rapid heating and quenching.

XRD of static and dynamic RHQT Nb₃Al wires

 $\epsilon I_{RHO} \leq 65A$, brittle, Nb₂Al+A15 after 800 °C 10h $\epsilon I_{RHO} = 67^{\circ}71A$, ductile, A15 after 800 °C 10h

Nb₂Al+A15 for 124 A RHQT sample

Single filament JR Nb₃Al 30um Jelly roll Nb/Al foils

Rapid heating and quenching (RHQ)

Characterization:

✓ XRD ✓ M-T ✓ M-H

M-T curves of RHQT Nb₃Al wires *Tc-onset* and ΔTc of RHQT Nb₃Al wires

64 A ~71 A, 0.8 s

- ♠ Static RHQ *Tc* peak: 65 A, 17.5 K; Smallest ΔTc : 71 A, 2.1 K ♠ Dynamic RHQ
- *Tc* peak: 120 A, 17 K; Smallest ΔTc : 120 A, 122A; both ~1.1 K

Jc calculated by Bean model from M-H

♠ Best Jc@4.2 K: static RHQ is 71 A; Dynamic RHQ is 122 A, 120 A~122A is Jc plateau

♠ Best Jc@10 K: static RHQ is 69.4 A; Dynamic RHQ is 122A.

—— 120A

-**-** 123A

—**←** 124A

ฮ์ -0.15 -

→ 121A

- 122A

- ♠ Best *Birr*@4.2 K: static RHQ is 69.4 A, Dynamic RHQ is 120A
- ♠ Best *Birr*@10 K: static RHQ is 69.4 A, Dynamic RHQ is 120A

- ♠ best Fp@10 K in all Nb₃Al samples Dynamic RHQ: 120A
- Surface pinning mechanism: Grain boundary and Stacking faults

Conclusion

- Static RHQT Nb₃Al wires have wider ΔT_c (>2.1 K) than dynamic RHQT Nb₃Al (~1.1 K).
- At 4.2 K, 6.5 T, J_c range of dynamic RHQT Nb₃Al is 4.7~6.9 \times 10⁴A/cm², much narrower than the static RHQT samples of $1.8^{\circ}3.4 \times 10^{4}$ A/cm².
- \bullet Nb₂Al impurity phase formed when I_{RHO} deviated from optimism condition: static RHQ of 64A~65A (lower I_{RHO}) and dynamic RHQ of 124A (higher I_{RHO}).

We acknowledge financial support from National Key R&D Program of China (No. 2017YFE0301401).