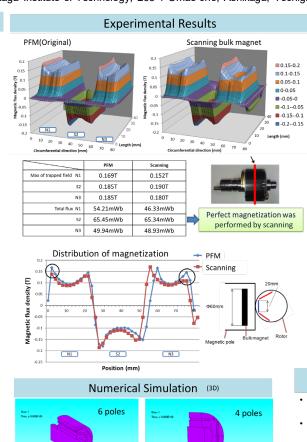
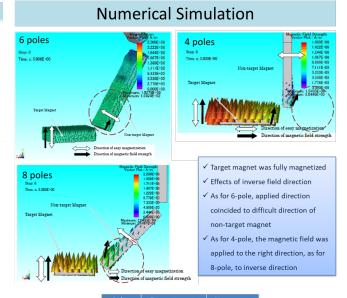

Magnetizing Technique for Permanent Magnets in IPM Motor Rotors Using HTS Bulk Magnet

T. Oka¹, S. Hasebe², J. Ogawa², S. Fukui², T. Nakano², K. Yokoyama³, M. Miryala¹, N. Sakai¹ and M. Murakami¹


¹Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ward, Tokyo, 135-8548 Japan

²Niigata University, 8050 Ikarashi-2-nocho, Nishi-Ward, Niigata, 950-2181 Japan


³Ashikaga Institute of Technology, 268-1 Omae-cho, Ashikaga, Tochigi, 326-8558 Japan

Neighboring magnets

8 poles

Summary

83%

Full

Full

< 1%

< 1%

60%

- A unique activation technique for permanent Nd-Fe-B magnets embedded IPM motors has been developed with use of HTS bulk magnet
- The sample rotor were exposed in the intense static magnetic fields above the magnetic pole containing the bulk magnet generating over 3 T
- The experimental and numerical simulation studies were conducted to evaluate the magnetic field-trapping performances
- The magnetization property of permanent magnet plates in the rotor was found to follow the magnetization curve of the material with its anisotropic magnetization property
- The sample magnets were perfectly magnetized in the static magnetic fields
- We convinced this technique should enable us to promote the degrees of freedom of motor designing and processing.