OUTLINE

- Introduction
 - LTS Quadrupole Triplet Magnet System for the IBS RAON Inflight-Fragment Separator
- System Information
 - Conductor
 - Quadrupole
 - Hexapole and Octupole
- Simulation Method
- Results
 - Quadrupole Quench Simulation Case 1
 - Quadrupole Quench Simulation Case 2
 - Hexapole and Octupole
- Conclusion

Introduction

- Institute of Basic Science (IBS) building a heavy ion particle accelerator,
 Rare isotope Accelerator complex for ON-line experiment (RAON).
- Total 13 units of Low-Temperature Superconductor quadrupole triplet made by JH Engineering will be deployed to control the beam line in the Inflight-Fragment separator of RAON facility.
- To achieve compact, accurate, and stable system,
 - One unit of triplet magnet system to be operated in one single cryostat.
 - 5 magnets: 3 triplets, 1 Hexapole, and 1 Octupole.
 - A serpent-like Hexapole, and Octupole magnet are inside the unit for field correction.
 - Superferric type quadrupole of high thermal capacity to be used.
- This research performs numerical analysis of the triplet magnet system.

System Information – Conductor

Same NbTi wire for all magnet.

Conductor Property	Value
Superconductor	NbTi
Bare wire diameter	1.02 mm
Insulated diameter	1.10 mm
Insulation material	Formvar
Cu/SC ratio	4.3
RRR	120
Breakdown Voltage	2000 V
Critical current @ 4.2 K, 10 ⁻¹⁴ Ω·m	
at 3 T	685 A
at 4 T	570 A
at 5 T	470 A

< Conductor Properties >

Epoxy impregnation (thermal contact)
modeled with a contact factor (c.f)
which represent the imperfect contact
between neighboring windings.

System Information – Quadrupole

- Three quadrupoles(LQn), one hexapole (Lx), and one octupole (Lo)
 operated by independent power supply.
- Dimensions of the shorter quadrupole LQ1, and LQ3 identical.
- LQ2, longest, stores largest amount of energy.

<An overview of a quadrupole triplet magnet designed by JH Egineering>

Parameters	LQ1, LQ2, LQ3	
Coil nominal length [mm]	632, 992, 632	
Yoke length [mm]	450, 810, 450	
Effective length [mm]	550, 900, 550	
Pole tip radius [mm]	180	
Yoke outer radius [mm]	420	
Coil winding cross-section height, width [mm]	44, 44	
Total turns	1600	
Maximum lop [A]	165	
Bmax in the coil @ lop,max [T]	3.6	
Operating temperature, Top [K]	4.2	
Yoke mass [ton]	1.16, 2.08, 1.16	
Yoke material	Silicon Steel Non-Grain-oriented (50PN1300)	

System Information – Hexapole and Octupole

- Hexapole (Lx) and octupole (Lo) inside of LQ1 pole tip.
- Serpentine coils with only one single loop.
- Two coils, for delicate field correction, operated with independent power supplies.

Properties	Lx	Lo
Desired effective length [mm]	550	550
Designed effective length @ 40% operation [mm]	551.0 (@ 40 A/mm²)	549.6 (@ 48 A/mm²)
Simulated inductance [H]	0.298	0.176

< Overview of Hexapole and Octupole >

< Properties of Hexapole and Octupole >

Simulation Method

• A FDM based simulation program (Qsim) is developed.

Simulation Method

< Quench propagation modeling of 'Qsim' code >

Quench propagation modeled in two ways

- Longitudinal direction: Calculating Normal Zone Propagation Velocity.
- Transverse direction: Thermal, neighboring wires.
- Semi-3D simulation.

- Magnet inductance varies with operation current because of saturated iron yoke.
- Inductance matrix pre-calculated by simulation.

lop (A)	LTotal (H)	L1 (H)	L12 (H)	L13 (H)	M12 (H)	M13 (H)
5	46.8	7.59	19.86	14.04	2.34	-0.57
25	46.83	7.6	19.87	14.05	2.34	-0.57
45	46.33	7.6	19.84	14.05	2.32	-0.57
65	38.91	7.55	18.56	14.01	1.73	-0.55
85	31.32	7.11	15.25	13.51	0.52	-0.35
105	27.08	6.19	13.06	12.08	0.34	-0.15
125	24.27	5.5	11.66	10.76	0.33	-0.13
145	22.23	5.01	10.64	9.79	0.31	-0.12
165	20.75	4.64	9.88	9.06	0.3	-0.11

< Inductance of LQ2 magnet with respect to the operation current >

Analysis Assumptions

- System critical values: breakdown voltage (2 kV); peak temperature (150 K)
- Adiabatic cooling condition.
- Contact factor (c.f.): 0.9 for quadrupoles (experimental value).
 Much lower in hexapole and octupole (discussed [page 15]).
- Quadrupole quench analysis focused on LQ2 magnet, having the largest energy.
 - In other words, LQ1 and LQ3 will be safe if LQ2 is safe.
- The quench occurred in the maximum operating currents:
 - [165 A] for quadrupole, [150 A] for hexapole, and [180 A] for octupole.
- Power supply (P/S) shuts down, or diodes turn on immediately after a quench event.

- LQ2 magnet quench scenario simulated.
- Single quadrupole divided into 4 coil sections (one section per pole).
- Worst-case scenario for the division method
 - : quench confined to only one single pole (Coil)

< Protection circuit diagram of the quadrupole >

Assumptions

- Each coil has own closed loop with ideal diode
- The inductance matrix is calculated from FEM simulation.

< Temperature distribution of inside winding >

- Most conductor quenched before 0.4 s.
- Even if the P/S does not shut down, protection diode will turn on very quickly.
- Peak temperature raised to 68 K, much less than the critical limit.
- Peak voltage due to normal zone: 286 V.

- In realistic situation, Coils2-4 effected by Coil1 quench by electromagnetic coupling
- Electromagnetic interaction quenches Coils2-4 (diode turn on, or AC loss)
- Virtual model of quench heater (1 W, initial) simulates realistic situation.

Additional Assumptions

- Quench heater activated right after the quench.
 - Semi-passive heater operation.
- Heater attached to the entire innermost layer area to quench the innermost layer
 - = Evenly distributed energy

< Temperature distribution of inside winding >

- Most conductor quenched before 0.4 s.
- Decaying currents in Coil2-4 energizing Coil 1.
- Peak temperature increased to 71 K, higher by 3 K compared to Case 1.
- Peak voltage is 298 V, a <u>12 V</u> increase compared to Case 1.
- No significant differences in more realistic situation.

Result – Hexapole and Octupole

 Because of a serpentine winding structure, thermal contacts inside the hexapole and octupole not as good as in the quadrupole winding.

: Contact factor (*c.f.*) much lower than 0.9 (quadrupole, experimental value).

	Hexa	pole	Octu	pole
Inductance [H]	0.295		0.178	
Operation Current [A]	150		180	
Conductor Length [km]	1.6		1.5	
Contact Factor (c.f.)	0.25	0.5	0.25	0.5
Peak Temperature[K]	45	41	43	40
Peak Voltage[V]	22	24	22	25

< c.f.=0.5, only half side impregnated >

< c.f.=0.25, even the half impregnated
 side has 50 % voids >

However, the internal heat transfer is much worse than the quadrupole (e.g., c.f.=0.25), the total energies stored in the hexapole and the octupole low enough not to damage both coils.

Conclusion

- LTS Quadrupole Triplet Magnet System for the IBS RAON Inflight-Fragment Separator briefly introduced
 - specifications, configuration, and magnet quench behavior

Cases	Peak Temperature [K]	Peak Voltage [kV]
Critical limits	150 [K]	2.0 [kV]
Case1: LQ2 w/o Heater	68 [K]	0.29 [kV]
Case2: LQ2 w/ Heater	71 [K]	0.29 [kV]
Hexapole with <i>c.f.</i> =0.25	45 [K]	0.02 [kV]
Octupole with <i>c.f.</i> =0.25	43 [K]	0.02 [kV]

 □ Based on our simulation results, we conclude that the magnet, equipped with internal protection diode and thus self-protected, will operate safely