AC loss, contact resistance, and cabling degradation analysis of various Nb3Sn sub-size CICC cable designs Anvar V.A^{1, 2}, T.E.W. Hamer¹, T. Bagni¹, K.A. Yagotintsev¹, J. Qin³, Y. Wu³, A. Devred⁴, M.S.A. Hossain^{2,5}, C. Zhou^{1,3}, A. Nijhuis¹ ¹The University of Twente, Faculty of Science & Technology, 7522 NB Enschede, The Netherlands, ²University of Wollongong, Wollongong, Australia, ³Institute of Plasma Physics, Chinese Academy of Sciences, China ⁴ CERN, Technology Department, CH-1211 Geneva 23, Switzerland, ⁵he University of Queensland, School of Mechanical and Mining Engineering, Brisbane, QLD 4072, Australia ## **Abstract** - The superconducting cables for magnet systems in nuclear fusion reactors usually adopt the Cable-in-Conduit conductor (CICC) concept. - Six sub-size CICC cables made of Nb3Sn strands are manufactured and tested experimentally on AC coupling loss, interstrand contact resistance, and cabling degradation. - The inter-strand coupling loss is analyzed with the numerical code JackPot ACDC, developed at the University of Twente, to find an optimal cable pattern. - Transport current degradation is measured on a few selected strands in the cables and strand indentation from cabling and compaction are analyzed as well ## Six Sub-size CICC cable patterns Void fraction | Twist pitch lengths [mm] | Cabling angle | Jacket inner diameter [mm] | 50×58×66×76 11.95 11.70 0.945 11.55 23.2 ± 1 50×58×66×76 Cable 3 **Twente** 12.35 32.3 ± 1 50×58×66×76 0.938 Cable 4 **Twente** 32.6 ± 1 25×50×90×160 0.966 12.20 Cable 5 Cable 6 (40+10)×60×90×160 12.45 Soft copper strand around Nb3Sn strands in short twist Twente design with twist pitch ratio close to one • ITER Baseline for comparison ## Conclusions - All the Twente cable designs showed lowest coupling loss with no visible strand indentation and critical current degradation - Inspection of strand indentation shows no relevant deformation of strands for the Twente design but strong deformation in CWS, intermediate in CSMC. - Extracted strands show degraded performance for CWS design (10%), while samples from other SS CICC designs perform close to reference (more extracted strand tests foreseen). - Twente cable design is a suitable candidate for high J_c Nb3Sn CFETR conductors