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Introduction

= The application of resistive superconducting fault current limiters (R-SFCLSs) in voltage source converter (VSC)-based systems has been studied, and adding additional
encapsulation layers to high temperature superconducting coated conductors (HTS-CCs) used for the R-SFCLs is getting practical.

= Based on the fault current of a VSC system, a 2-D and a 1-D HTS-CC model are respectively developed in the COMSOL Multiphysics to analyse the effect of the
encapsulation layers on their over-current performance. The maximum current-tolerance, the resistance characteristics and the quench recovery time are investigated under
DC over-current impact.
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C. Simulation of the Maximum Current-tolerance = When the magnitude of the over-current is larger, the lag time is shorter.
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Conclusion

= The 2-D model proves that the encapsulation can significantly improve the maximum tolerated current of the HTS-CCs used for R-SFCL in VSC-based DC system.

= While the Increase In capsulation thickness reduces the resistance per unit length, the simulation in the 1-D model demonstrates that the increase in maximum current-
tolerance can reduce the number of parallel branches. This is still likely to improve the total resistance of the applied R-FCL. Also, the HTS-CC tolerating larger current is
also more active to the fault.

= The HTS-CC operating at a larger fault current means a longer recovery time, but at the same fault current, the thicker the HTS-CC Is, the faster it will recover.

= The benefits of the encapsulation in HTS-CCs used for the R-SFCLs of VSC-based systems should be recognized, and the thickness should be taken into account based on
the peak value of the fault current, the resistance and the recovery time.
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