

Cogging Torque Reduction in Double-Rotor Hybrid Excited Axial Switched-Flux Permanent Magnet Machine

Jilong Zhao¹, Xiaowei Quan¹, and Mingyao Lin²

¹School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, 710048, China ²School of Electrical Engineering, Southeast University, Nanjing, 210096, China *Email: jlzhao@xaut.edu.cn

Session: Tue-Af-Po2.20-09 [61] 24 Sept. 2019, 14:00-16:00 Posters Area: Motors VII

I. Introduction

- -Axial switched-flux permanent magnet (ASFPM) machines have attracted a lot of attention, which combine the advantages of the axial flux machine and SFPM machine.
- -A novel double-rotor hybrid excited ASFPM (DRHE-ASFPM) machine is presented to broaden the constant power operating range and improve the load capacity.
- -In order to reduce the cogging toque and torque ripple, three cogging torque reduction methods are proposed for the DRHE-ASFPM machine.

II. Topology

Fig. 1. Topology of DRHE-ASFPMM.

Items

rated output power, P_N (W)

rated speed, n_N (r/min)

rated armature current, I_N (A)

rated excitation current, I_f (A)

outer diameter of stator, D_{so} (mm)

inner diameter of stator, D_{si} (mm)

stator length, I_s (mm)

stator yoke length, I_{sv} (mm)

rotor length, I_r (mm)

rotor yoke length, I_{rv} (mm)

stator tooth arc, β_{st} (°

stator middle tooth arc, β_{sm} (°)

stator slot arc, β_{ss} (°

PM arc, β_{pm} (°)

rotor tooth arc, β_{rt} (°

air gap length, g (mm)

armature winding turns, N₂

excitation winding turns, N_i

TABLE I

Major Design Parameter

Value

Fig. 3. Operation principle under hybrid excitation mode. (a) Flux-enhancing. (b) Flux-weakening.

Cogging torque

$$T_{\text{cog}} = -\frac{g(D_{\text{so}}^2 - D_{\text{si}}^2)}{16\mu_0}$$

$$\times \int_0^{2\pi} \sum_{n=0}^{\infty} B_{\text{rn}} \cos np_{\text{s}} \theta \times (\frac{2g(\theta, \alpha) - 1.646\beta_{\text{pm}}}{h_{\text{m}}^2}) \frac{\partial g(\theta, \alpha)}{\partial \alpha} d\theta$$

III. Cogging Torque Reduction Method A. Stator/Rotor Teeth Notching Fig. 4 Various combinations of stator/rotor tooth notching. C. Stator Slot Chamfering and Tooth Notching **B. Stator Slot Chamfering**

IV. Experiment Validation

Fig. 9 Experimental results. (a) Measured back-EMF. (b) Measured cogging torque.

V. Conclusion

- -A novel DR-HEASFPM machine is proposed, and the wide-speed operating range is achieved and the load capacity is enhanced.
- reduction cogging torque proposed for the DRHE-ASFPM machine, such as the stator/rotor teeth notching and stator slot chamfering. Finally, the cogging toque is reduced and the torque ripple is decreased.
- -The proposed DRHE-ASFPM machine is suitable for the electrical vehicles.