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Background

Improved MOPSO

In order to realize the design objectives of high power generation performance and stable suspension capability, a multi-objective optimization method based on a response surface (RS) model and an improved

multi-objective particle swarm optimization (MOPSO) algorithm is proposed and utilized to the multi-objective optimization design of a bearingless permanent magnet synchronous generator (BPMSG). Firstly, xi‘;*l = H(X'l; +Vi§+1)%xmax H /\ Initial and Optimal Designs
the operating principle of the BPMSG is introduced. Secondly, the design variables and the design objectives are determined and the design space is reduced by the sensitivity analysis. Thirdly, the RS models of 2600, L Symbol (Unit mitial Optimal
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The proposed optimization method includes
three modules, which are sensitivity analysis,
RS models construction and optimization based
on the improved MOPSO algorithm.

Compared with the initial generator, the average suspension force of the optimal generator is increased by 21%, the suspension force ripple of
the optimal generator is decreased by 52%. It can be calculated that the THD of the initial and optimal generator is 12.6% and 6.6%

Conclusion

As depicted in Fig. 4, comparing with other variables, h, 6, o and B, are more
significant.
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A multi-objective optimization method of BPMSG is put forward in this paper, which includes the sensitivity analysis, the RS modeling and the optimization of the
Improved MOPSO algorithm. The electromagnetic performances of the optimal generator and the initial generator are compared by FEA software. The results show

T  Tx —— ' T e that the average torque and suspension force of the optimal generator are increased, the torque ripple and suspension force ripple are decreased, and the output voltage
waveform is more sinusoidal. Therefore, the proposed BPMSG multi-objective optimization method can conveniently and effectively obtain the optimal generator,
which improves the overall electromagnetic performance and greatly shorten the optimization time.
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As shown in the figure above, the RS models have the extreme values, and the design
variables have the optimal ranges, but the optimal ranges of each RS model are
different.

9 parameters of the stator and permanent
magnets are selected as design variables.




