
As shown in Fig. 5, the RS models have the extreme values, and the design variables have the optimal ranges, but the optimal ranges of each RS 

model are different. Therefore, in order to avoid the conflict between the design objectives, the multi-objective intelligent optimization algorithm must 

be adopted.
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wever, there are more or less problems in the existing methods raised recently such as over-dependence on experience or mathematical models and requiring external circuits and special signal processing technologies. Soft sensing model can handle these problems well.
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Design Variables 

Symbol(Unit) Quantity Low level High level

h(mm) PM thickness 3 5.5

q(deg) PM pole arc angle 35 45

a(deg) PM chamfering angle 0 35

Bs0(mm) Slot opening width 1 3

Bs1(mm) Slot wedge maximum width 3.5 5.5

Bs2(mm) Slot body bottom width 6 8

Hs0(mm) Slot opening 0.5 1

Hs1(mm) Slot wedge height 0.5 1.5

Hs2(mm) Slot body height 14 18

In order to realize the design objectives of high power generation performance and stable suspension capability, a multi-objective optimization method based on a response surface (RS) model and an improved

multi-objective particle swarm optimization (MOPSO) algorithm is proposed and utilized to the multi-objective optimization design of a bearingless permanent magnet synchronous generator (BPMSG). Firstly,

the operating principle of the BPMSG is introduced. Secondly, the design variables and the design objectives are determined and the design space is reduced by the sensitivity analysis. Thirdly, the RS models of

design objectives are constructed and the improved MOPSO algorithm is applied to get the Pareto optimal sets. Finally, the initial generator and the optimal generator are compared using the finite element

analysis software.

Initial and Optimal Designs

Symbol(Unit
)

Initial Optimal

h(mm) 4.25 4.31
q(deg) 40 36.17
a(deg) 17.5 29.5
Bs0(mm) 2 3
Bs1(mm) 4.5 4
Bs2(mm) 7 6
Hs0(mm) 0.75 0.5
Hs1(mm) 1 0.5
Hs2(mm) 16 14
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A multi-objective optimization method of BPMSG is put forward in this paper, which includes the sensitivity analysis, the RS modeling and the optimization of the 

improved MOPSO algorithm. The electromagnetic performances of the optimal generator and the initial generator are compared by FEA software. The results show 

that the average torque and suspension force of the optimal generator are increased, the torque ripple and suspension force ripple are decreased, and the output voltage 

waveform is more sinusoidal. Therefore, the proposed BPMSG multi-objective optimization method can conveniently and effectively obtain the optimal generator, 

which improves the overall electromagnetic performance and greatly shorten the optimization time.

Conclusion
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The proposed optimization method includes

three modules, which are sensitivity analysis,

RS models construction and optimization based

on the improved MOPSO algorithm.

If the current direction of the suspension force

windings is as shown in the figure above, a 2-pole

suspension force magnetic field is produced, which

increases the flux density in the air-gap 1 and

decreases the flux density in the air-gap 2, thus

producing a radial suspension force pointing to the

positive direction of the y axis.

9 parameters of the stator and permanent

magnets are selected as design variables.

As depicted in Fig. 4, comparing with other variables, h, q, a and Bs0 are more 

significant.
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As shown in the figure above, the RS models have the extreme values, and the design

variables have the optimal ranges, but the optimal ranges of each RS model are

different.
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In these equations, k is the number of current iterations, d=1,2,...,D,

i=1,2,...,xSize, xSize is the total amount of particles in the population, c1 and

c2 are acceleration coefficients, r1 and r2 are random numbers in [0,1],

weighting coefficient w can be constant. For better results, the weighting

coefficient  is modified as

 1 1

max%k k k

id id idX X V X   
 

where max is the initial inertia weight, min is the inertia weight of the

maximum generation, Gmax is the maximum generation number of

iteration. Compared with linear decreasing inertia weight, the value of 
in the early stage is larger and changes slowly, which better maintains the

global search ability. While in the later stage,  changes faster, which

improves the local optimizing ability of the algorithm.
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Compared with the initial generator, the average suspension force of the optimal generator is increased by 21%, the suspension force ripple of

the optimal generator is decreased by 52%. It can be calculated that the THD of the initial and optimal generator is 12.6% and 6.6%


