

Fundamental study on the effect of Zn addition into Cu matrix in DT method Nb₃Sn conductors

Nobuya BANNO (NIMS), Taro MORITA (NIMS, Sophia Univ.), Tsuyoshi YAGAI (Sophia Univ.), Shinya KAWASHIMA (Kobe Steel), Yukinobu MURAKAMI (JASTEC)

Abstract

Kobe Steel has developed brass matrix DT (distributed tin) method Nb₃Sn wires, aiming to achieve both high J_c performance and high robustness, in collaboration with NIMS.

Wire ID: Z-DT2018

In this work,

Measurerment of Non-Cu J_c of the developed brass matrix DT wires. Microstructural study on diffusion reaction behavior,

especially during the pre-annealing, towards more detailed optimization of pr

towards more detailed optimization of process parameters and further $J_{\rm c}$ improvement

	C-DT2017	Z-DT2017	Z-DT2018	High spec DT
Wire diameter (mm)	0.6	0.6	0.6	
Nb ratio within barrier (%)	38.6	38.6	46.6	48.0%
Nb filament diameter (μm)	3.4	3.4	3.4	1.2 µm
Matrix of Nb module	Cu	Cu-15wt%Zn	Cu-15wt%Zr	ı Cu
Matrix of Sn core	Cu	Cu	Cu	
Nb module diameter (μm)	45	45	45	32 µm
Sn diffusion distance (µm)	45	45	45	32 µm
Ti ratio within barrier (wt%)	0.7	0.7	0.6	0.44
Zn ratio within barrier (wt%)	О	5.6	3.9	
Nb / Sn atomic ratio	2.24	2.24	3.0	
Cu / non-Cu ratio	1.12	1.12	1.12	

Design parameters have not optimized yet

Non-Cu J_c -B characteristics for fabricated wires

Primary heat treatment: 210 °C/6 h + 350 °C/18 h + 460 °C/28 h, + around 570 °C/180 h + 665 °C/200 h

Microstructural change C-DT2017

Completely different

void Ti compound α-CuSn δ-CuSn δ-CuSn δ-CuSn δ-CuSn δ-CuSn

after 400 °C/200 h ₊ 480 °C/50 h

 β -CuZn phase forms in Z-DT.

Better Sn penetration into Nb module.

Fewer voids form.

after 400 °C/200 h ₊ 535 °C/50 h

 δ and β phases started to decompose.

Dendritic mixed phase of $\delta + \alpha$

Problem of Ti Segregation, when doping Ti to Sn core after 400 C/200 h + 535 C/50 h

after Primary heat treatment

Conclusion

- Brass DT Nb₃Sn wires have been developed.
- Zn addition results in β -CuZn formation, suppressing growth of $\delta + \epsilon$ phases that often cause void growth.
- Zn addition improves Sn and Ti distribution in the Nb filament pack.