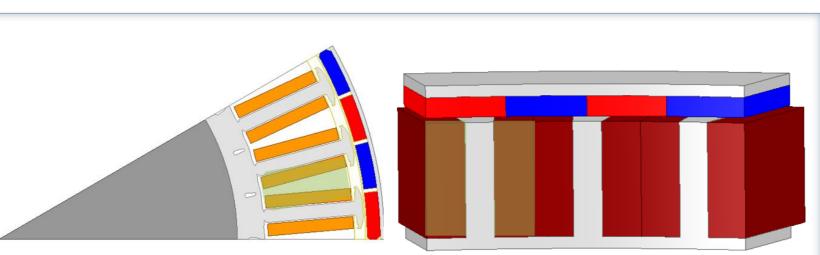

Abstract


Conventional Axial Flux Permanent Magnet Synchronous Motor rolls an amorphous electrical steel sheet to implement the shape of a stator or manufactures it with a mold. Therefore, three-dimensional structure production is limited, mass production is low, and manufacturing cost is high. Therefore, in this paper, the three-dimensional structure that could not be implemented in the existing Axial Flux Permanent Magnet Synchronous Motor is applied to the 3D printing technology with Soft Magnetic Composite(SMC) core instead of the existing electrical steel sheet, to the shape design and the performance of each was compared and analyzed.

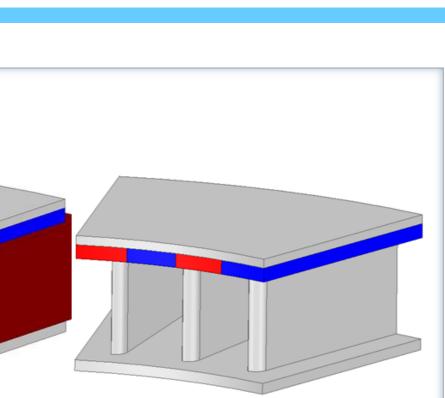
1. Specification of motor

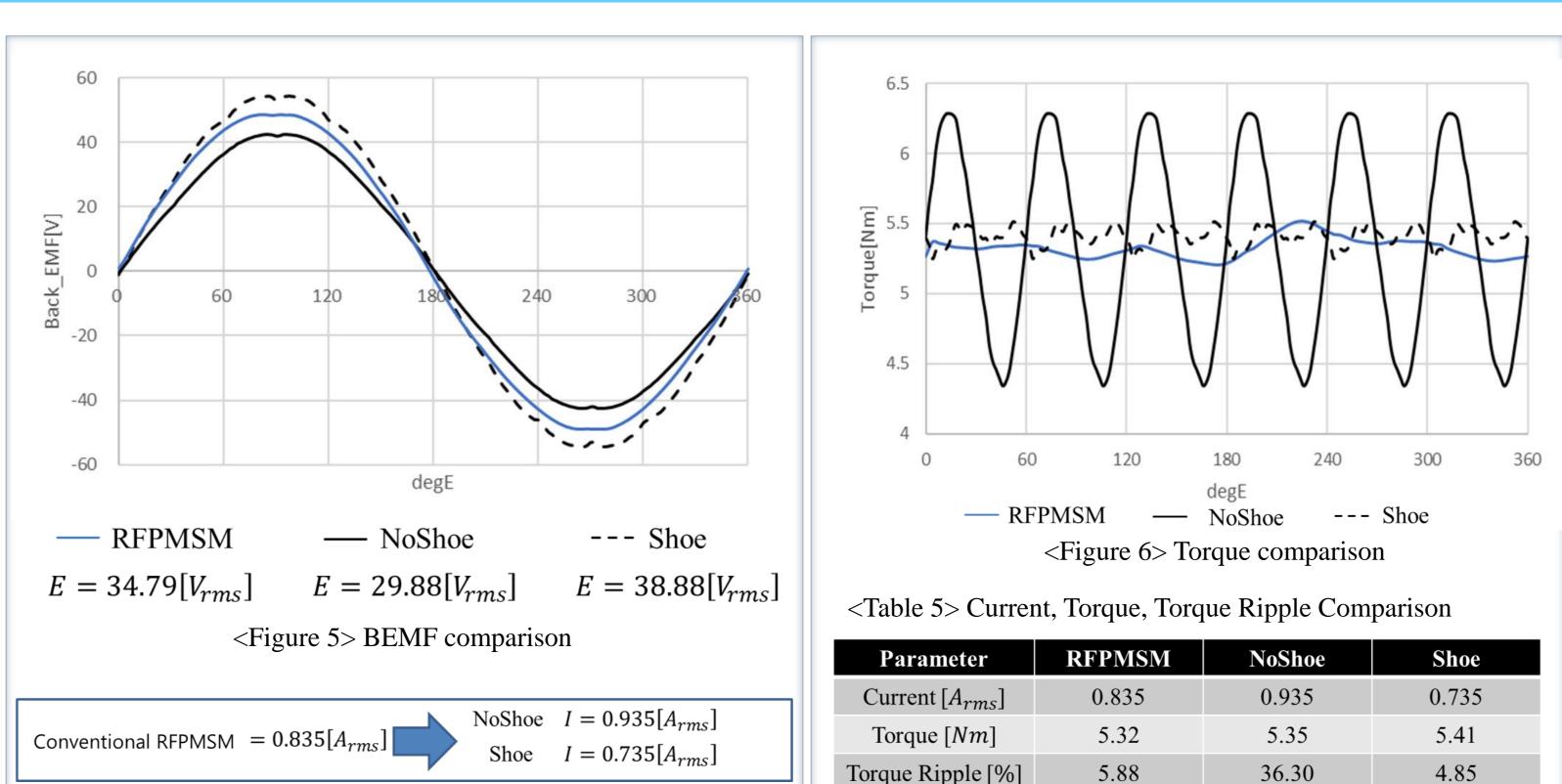
	<fig< td=""><td>gure 1> Co</td><td>nventional</td><td></td><td></td><td><figure 2=""> Radial Flux → Axia</figure></td><td>al Fluz</td></fig<>	gure 1> Co	nventional			<figure 2=""> Radial Flux → Axia</figure>	al Fluz
Direct Drive Motor							
	L	Direct Drive	e Motor			<table 2=""> Axial Flux Motor</table>	
	L	Direct Drive	e Motor			<table 2=""> Axial Flux Motor Design Specification</table>	
able						Design Specification	
able	1> Conventional	motor speci	ification	Parameter	Value[mm]		
able				Parameter Stator Outer Diameter	Value[mm] 273	Design Specification Parameter Value [r	mm]
able	1> Conventional 1 Parameter	motor speci	ification	Stator Outer Diameter Stator Inner Diameter	273 178.3	Design Specification	mm]
	1> Conventional 1 Parameter Pole / Slots	motor speci Value 48 / 36	ification Unit	Stator Outer Diameter Stator Inner Diameter Stator tooth width	273 178.3 5	Design Specification Parameter Value [r	mm]
	1> Conventional of Parameter Pole / Slots Speed @ Washing	Motor speci Value 48 / 36 45	ification Unit - RPM	Stator Outer Diameter Stator Inner Diameter Stator tooth width Rotor outer Diameter	273 178.3 5 288	Design Specification Parameter Value [r Outer Diameter (Stator & Rotor) 288 Inner Diameter (Stator & Rotor) 178.3	mm]
	Parameter Pole / Slots Speed @ Washing Torque @ Washing Current @ Washing No-load EMF @ 150RPM	Value 48 / 36 45 5.2 0.835 35.09	ification Unit - RPM Nm	Stator Outer Diameter Stator Inner Diameter Stator tooth width	273 178.3 5	Design Specification Parameter Value [r Outer Diameter (Stator & Rotor) 288	mm]
nance	Parameter Pole / Slots Speed @ Washing Torque @ Washing Current @ Washing No-load EMF @ 150RPM Material	Value 48 / 36 45 5.2 0.835 35.09 Aluminum	ification Unit - RPM Nm A _{rms}	Stator Outer Diameter Stator Inner Diameter Stator tooth width Rotor outer Diameter Rotor Inner Diameter	273 178.3 5 288 275	Design SpecificationParameterValue [rOuter Diameter (Stator & Rotor)288Inner Diameter (Stator & Rotor)178.3Teeth Thick21.5	mm] 3
nance	Parameter Pole / Slots Speed @ Washing Torque @ Washing Current @ Washing No-load EMF @ 150RPM Material Diameter	Value 48 / 36 45 5.2 0.835 35.09 Aluminum 0.9	ification Unit - RPM Nm A _{rms} V _{rms} - mm	Stator Outer Diameter Stator Inner Diameter Stator tooth width Rotor outer Diameter Rotor Inner Diameter Magnet Thickness	273 178.3 5 288 275 5	Design Specification Parameter Value [r Outer Diameter (Stator & Rotor) 288 Inner Diameter (Stator & Rotor) 178.3	mm] 3
nance	Parameter Pole / Slots Speed @ Washing Torque @ Washing Current @ Washing No-load EMF @ 150RPM Material Diameter Series Turns per Phase	Value 48 / 36 45 5.2 0.835 35.09 Aluminum 0.9 124	Ification Unit - RPM Nm A _{rms} V _{rms} -	Stator Outer Diameter Stator Inner Diameter Stator tooth width Rotor outer Diameter Rotor Inner Diameter Magnet Thickness Air Gap	273 178.3 5 288 275 5 5 1	Design SpecificationParameterValue [rOuter Diameter (Stator & Rotor)288Inner Diameter (Stator & Rotor)178.3Teeth Thick21.5	mm] 3 5 5
nance	Parameter Pole / Slots Pole / Slots Speed @ Washing Torque @ Washing Current @ Washing Current @ Washing No-load EMF @ 150RPM Material Diameter Series Turns per Phase Material	Value 48 / 36 45 5.2 0.835 35.09 Aluminum 0.9 124 Ferrite 7BE	ification Unit - RPM Nm Arms Vrms Vrms - mm turns -	Stator Outer Diameter Stator Inner Diameter Stator tooth width Rotor outer Diameter Rotor Inner Diameter Magnet Thickness Air Gap Bs0 Hs0 Hs1	273 178.3 5 288 275 5 1 1 8.05 1.3 1.1	Design SpecificationParameterValue [rOuter Diameter (Stator & Rotor)288Inner Diameter (Stator & Rotor)178.3Teeth Thick21.5Magnet Length54.85Magnet Depth3.1	mm] 3 5 5
nance	Parameter Pole / Slots Speed @ Washing Torque @ Washing Current @ Washing No-load EMF @ 150RPM Material Diameter Series Turns per Phase Material Br	Value 48 / 36 45 5.2 0.835 35.09 Aluminum 0.9 124 Ferrite 7BE 0.41	Tification Unit - RPM Nm Arms Vrms - Vrms - mm turns - T	Stator Outer Diameter Stator Inner Diameter Stator tooth width Rotor outer Diameter Rotor Inner Diameter Magnet Thickness Air Gap Bs0 Hs0 Hs1 Hs2	273 178.3 5 288 275 5 5 1 1 8.05 1.3 1.1 32.39	Design SpecificationParameterValue [rOuter Diameter (Stator & Rotor)288Inner Diameter (Stator & Rotor)178.3Teeth Thick21.5Magnet Length54.8	mm] 3 5 5
mance	Parameter Pole / Slots Pole / Slots Speed @ Washing Torque @ Washing Current @ Washing Current @ Washing No-load EMF @ 150RPM Material Diameter Series Turns per Phase Material Br Hc	Value 48 / 36 45 5.2 0.835 35.09 Aluminum 0.9 124 Ferrite 7BE 0.41 300	ification Unit - RPM Nm Arms Vrms - Vrms - mm turns - T kA/m	Stator Outer Diameter Stator Inner Diameter Stator tooth width Rotor outer Diameter Rotor Inner Diameter Magnet Thickness Air Gap Bs0 Hs0 Hs1 Hs2 Stack_Stator	273 178.3 5 288 275 5 1 1 8.05 1.3 1.1 32.39 21	Design SpecificationParameterValue [rOuter Diameter (Stator & Rotor)288Inner Diameter (Stator & Rotor)178.3Teeth Thick21.5Magnet Length54.85Magnet Depth3.1Stator Thick2.4	mm] 3 5 5
Yable rmance nding	Parameter Pole / Slots Speed @ Washing Torque @ Washing Current @ Washing No-load EMF @ 150RPM Material Diameter Series Turns per Phase Material Br	Value 48 / 36 45 5.2 0.835 35.09 Aluminum 0.9 124 Ferrite 7BE 0.41	Tification Unit - RPM Nm Arms Vrms - Vrms - mm turns - T	Stator Outer Diameter Stator Inner Diameter Stator tooth width Rotor outer Diameter Rotor Inner Diameter Magnet Thickness Air Gap Bs0 Hs0 Hs1 Hs2	273 178.3 5 288 275 5 5 1 1 8.05 1.3 1.1 32.39	Design SpecificationParameterValue [rOuter Diameter (Stator & Rotor)288Inner Diameter (Stator & Rotor)178.3Teeth Thick21.5Magnet Length54.85Magnet Depth3.1	mm] 3 5 5

2. Proposed Model Design

<Figure 4> DD Motor & Axial-Flux Motor Fill Factor

<Table 4> Fill factor & Permanent Magnet Usage


				0		
Direct Drive Motor Spec						
Slot Area[mm	Number of Turn		$\begin{array}{c} \text{ss-section} & \text{Total Coil An} \\ mm^2 \end{bmatrix} & [mm^2] \end{array}$		cea Coil Fill factor[%]	
504	124	0.64		78.89		31.30
		AFDMC	M Snee			
		AFPMS	w spec			
Slot Area[mm	²] Number of Turn	Coil cross-section area[mm ²]		Total Coil Area [mm ²]		Coil Fill factor[%]
368	90	0.64		57.26		31.12
Motor	MotorTotal Magnet cross section area [mm2]		Magnet Depth [<i>mm</i>]		Total Magnet Volume [mm ³]	
RFPMSM	345.74		30			10,372.14
AFPMSM	3348		3.1			10,378.8


Design of SMC core in Axial-Flux Motor with 3D Printing

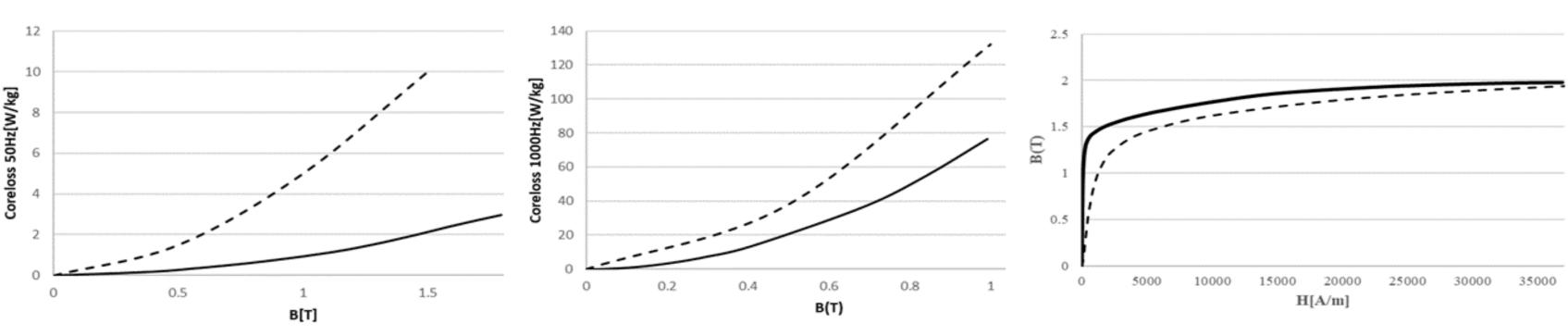
Hyun-Jo Pyo¹, Sung Gu Lee², Hyung-Sik Kong¹, Min-Jae Jeong¹, Dong-Woo Nam¹, Seo-Hee Yang¹ and Won-Ho Kim¹ ¹Department of Energy IT, Gachon University, Seongnam, Korea

²Department of Electronics Robot Engineering, Busan University of Foreign Studies, Busan, Korea

3. BEMF & Torque

• Comparison of BEMF of Conventional DD and Axial-Flux Motor <Table 6> Comparison the motor performance and loss

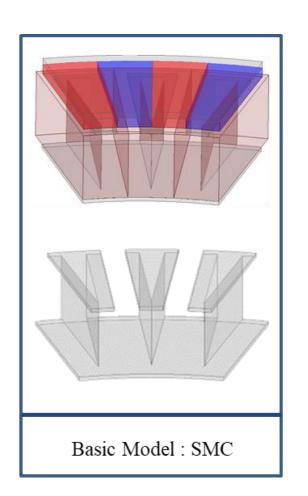
Compare to DD Motor


- [♥] NoShoe model Low BEMF
- Shoe model **High BEMF**
- Current to satisfy target torque
- NoShoe 0.935[Arms]
- Shoe 0.735[Arms]

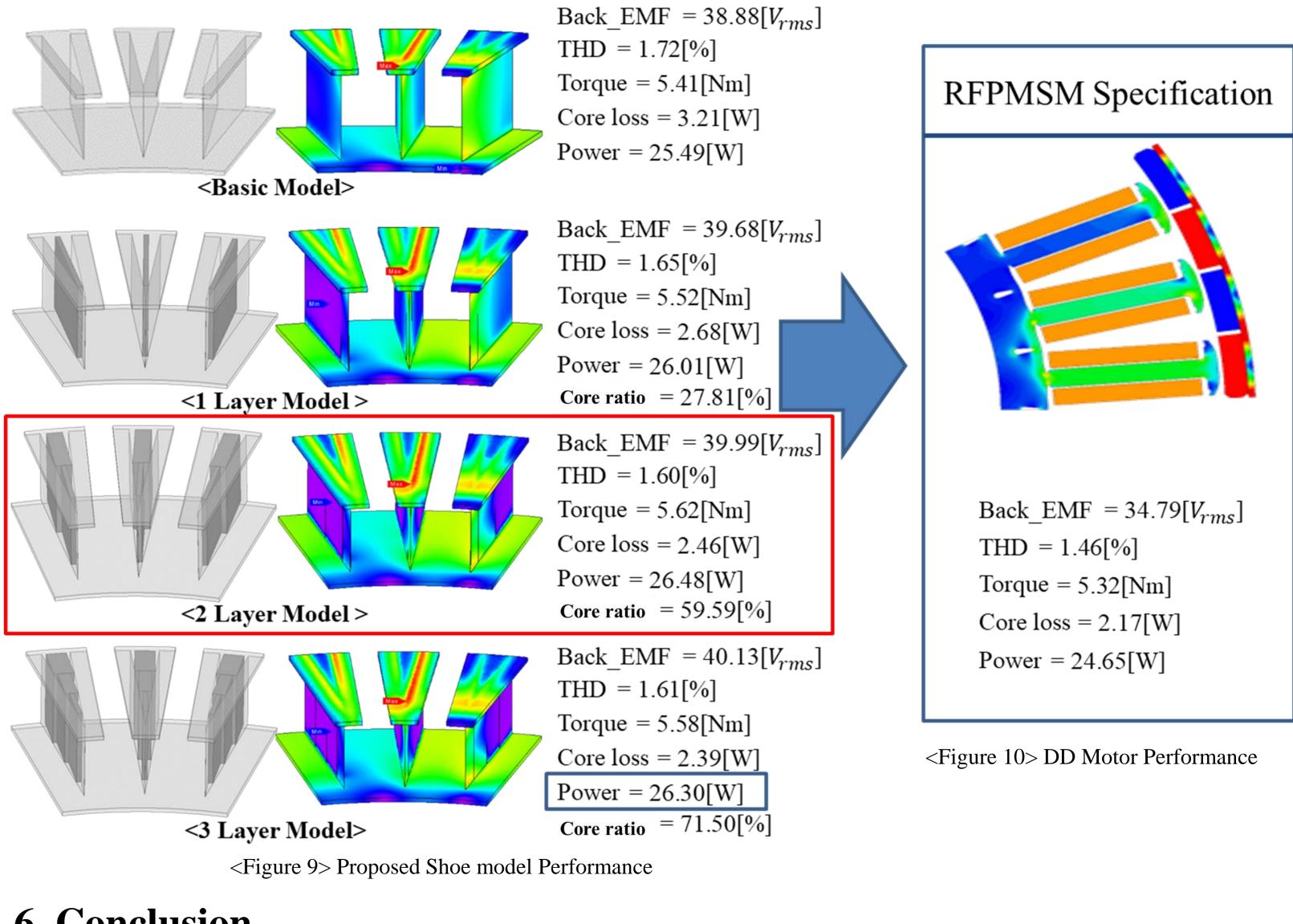
4. Core loss reduction design

Suggesting a method to reduce core loss

- Loss of low speed motor occurs mostly in the Copper Loss
- [©] Low frequency conventional 35PN230 material & Axial-Flux Somaloy material **Core loss & Initial Curve comparison**
- Core loss in high frequency is **1.7times higher** than 35PN230 based on 1[T]
- Core loss in low frequency is **5times higher** than 35PN230 based on 1.5[T]
- Insert the Stator Teeth part electrical steel sheet into 1, 2, 3 Layer as core loss reduction method

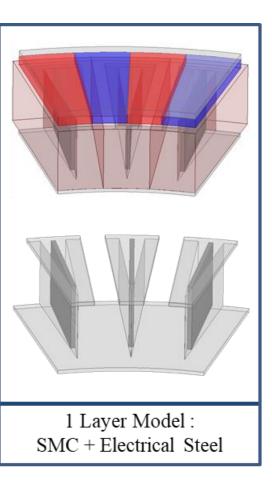


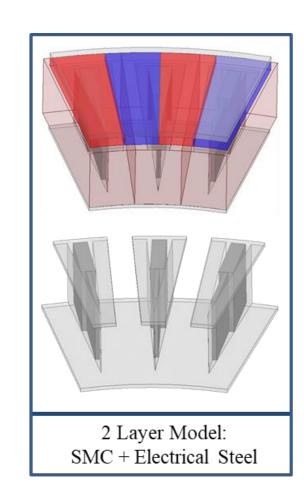
— 35PN230 ---- Somaloy 700 3P <Figure 7> Core loss & Initial Curve


Parameter	RFPMSM	NoShoe	Shoe
Current $[A_{rms}]$	0.835	0.935	0.735
Torque [Nm]	5.32	5.35	5.41
Torque Ripple [%]	5.88	36.30	4.85

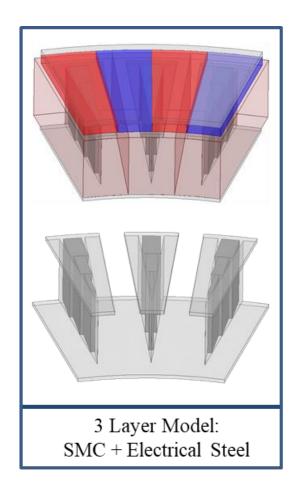
Demonstern		Axial-Flux Motor			
Parameter	UDD Motor	NoShoe	Shoe		
Back_EMF [V _{rms}]	34.79	29.88	38.88		
I $[A_{rms}]$	0.835	0.935	0.735		
Torque [Nm]	5.32	5.35	5.41		
Copper loss [W]	11.18	17.17	10.61		
Core loss [W]	2.17	3.52	3.21		
Power [W]	24.65	25.21	25.49		

5. Performance Comparison




6. Conclusion

The existing DD motor is compared with the newly proposed Axial-Flux motor in this paper. One of the proposed model was a Shoe-free model made of SMC core molded and compared with the AFPMSM using Shoe using 3D printing. Core loss compared to SMC core used better electrical steel sheet for the existing model, in this paper SMC core and electrical steel sheet were combined to propose the stator shape of the new axial flux motor. Since the core loss of the model including the shoe is larger than that of the existing target model through the FEM analysis, the final model in which the electrical steel is inserted into the stator teeth using the newly proposed SMC core was compared and analyzed through the FEM analysis. The core loss of the model which the electrical steel sheet is separated and inserted in three layers among the models incorporating the two core materials shows a similar core loss to existed target motor. Therefore, if a motor using 3D printing is developed in the future, various Axial Flux type motor shapes will be developed.



MT26 International Conference on Magnet Technology Vancouver, Canada | 2019

<Figure 8> Core loss reduction Proposed Model

