Mon-Af-Po1.22-12 [109]

# Study on Starting and Variable Speed Controllability of 50 kW Class Fully HTS

# Induction/Synchronous Motor Based on Multidisciplinary Analysis Code

Masaya Okuno, Taketsune Nakamura, Takuro Ogasa, Ryohei Nishino (Kyoto University, Japan) Masaaki Yoshikawa, Yoshitaka Itoh (IMRA MATERIAL R&D Co., Ltd., Japan)



#### INTRODUCTION

# High Temperature Superconducting Induction/Synchronous Motor (HTS-ISM)

for next generation transportation equipment e.g. train, bus, etc.

## **Structure**

HTS-ISM has the same structure as squirrel-cage induction motor, but its rotor bars and end rings are replaced with high temperature superconducting (HTS) tapes

# Advantages

- High efficiency
- High torque density
- Coexistence of synchronous as well as slip rotation mode and so on.



Photograph of HTS squirrel-cage rotor

# 50 KW FULLY HTS-ISM

#### **Fully HTS-ISM**

In order to improve the efficiency, stator windings are also fabricated by HTS tapes

## Fabricated 50 kW class fully HTS-ISM

We fabricated the 50 kW class fully HTS-ISM prototype



Photograph of Toroidal HTS stator



Photograph of fabricated 50 kW class fully HTS-ISM

# AC loss of HTS stator windings

Power losses of HTS stator • AC loss of HTS windings

• Iron loss of the core

We evaluated AC losses of the HTS stator windings of the 50 kW fully HTS-ISM





#### **ANALYSIS METHOD**

# Nonlinear voltage equations



# **Equation of motion**

$$\frac{\mathrm{d}\omega_{\mathrm{m}}}{\mathrm{d}t} = \frac{1}{J}(\tau - D\omega_{\mathrm{m}} - \tau_{\mathrm{load}})$$

Thermal equivalent circuit



 Outer surface of the stator is cooled by cryocooler.

v: voltage

*i*: current

 $\tau$ : torque

'a', 'b': ab-axis values

*J*: moment of inertia

 $\tau_{\rm load}$ : loaded torque

's', 'r': stator and rotor values

D: damping coefficient of rotor

 $R_s$  ,  $R_r$  :

HTS nonlinear

$$P_{\rm c} = 5 \times (T - 40 \text{K}) \text{ (W)}$$
  
(200W@80K; COP = 0.1)

Two kinds of gaseous coolant heat transfer i. radial-direction heat transfer produced by rotation of rotor

ii. axial-direction heat transfer produced by axial flow of gaseous coolant (2.4 m/s)

Thermal equivalent circuit of 50 kW fully HTS-ISM

# Multidisciplinary analysis code



Flow chart of multidisciplinary analysis procedure for 50 kW fully HTS-ISM

#### **RESULTS AND DISCUSSION**

#### **Load test**

in liquid nitrogen (77K)

World first success of 39 kW output (at 1500 rpm) for fully superconducting motor



Output power characteristics of load test (1500 rpm)

## WLTC rotation test (multidisciplinary analysis)

WLTC is a newly adopted global harmonized driving test cycle for measuring fuel consumption and CO2 emission



Rotation speed pattern of WLTC cycle

# WLTC test of 50 kW fully HTS-ISM was successfully carried out with developed multidisciplinary analysis method



• Electric consumption (km/kWh) was calculated: 10.7 km/kWh



Our drive system possesses high efficiency even if considering power consumption of cryocooler (More study is necessary)

#### CONCLUSION

- We developed multidisciplinary analysis method which combines nonlinear voltage equations, equation of motion and thermal equivalent circuit for 50 kW class fully HTS-ISM.
- · The maximum output reached 39 kW at 1500 rpm in load test (World first success).
- WLTC rotation test was carried out with developed multidisciplinary analysis method, and transient rotation and cooling characteristics were investigated.

# Acknowledgment

This work was supported by Japan Science and Technology Agency under the program of Advanced Low Carbon Technology Research and Development Program (JST-ALCA) in Japan. We would like to thank Dr. Liangliang Wei and Mr. Hideichi Nakamura in Kyoto University (Japan) for their support.