New Types of Organic Resins for Insulation of Warm Magnets

(Cyanate ester resin and UV-resin)

Presented by Kazuhiro Tanaka
Institute of Particle and Nuclear Studies, KEK
Kazuhiro.tanaka@kek.jp

At MT26 Conference, Vancouver, Sept. 23, 2019

K. H. Tanaka, H. Takahashi,

E. Hirose, Y. Komatsu, F. Muto

Magnet Team, Hadron Beam Channel Group, Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba-shi, 305-0801, Japan.

K. Yahata

EMC Division, TOKIN Corporation, Koriyama 6-7-1, Taihaku-ku, Sendai-shi, 982-8510, Japan.

High Intensity Accelerator Complex: J-PARC

- For high intensity accelerators such as Japan Proton Accelerator Research Complex (J-PARC), organic insulation materials with high radiation hardness are very much important especially for AC operation electromagnets.
 - For DC magnets, MIC technology is applicable!
 - For Small Turn Number Magnets: Ceramics Spray technology can be applicable!
- For J-PARC, we developed BT resin.
 - Some difficulty in its thermal property!
- For future high intensity accelerators, Cyanate ester resin is one of candidates.

Formation of Cyanate pre-polymer by three monomers via forming a triazine ring.

Bismaleimide-Triazine (BT) resin

Cyanate ester resin

Normal Epoxy resin

Ease of handling

Structure of TA pre-polymer

(Mitsubishi Gas Chemical Co. INC.)

TA (monomer):

Melting Point: 80°C

Viscosity at 80°C: 0.013 Pa-s

Room Temp.: White Flake

TA-500:

M. P.: not precisely defined

Viscosity at 80°C: 10 Pa-s

Room Temp.: Liquid

TA-1500:

M. P.: not precisely defined

Viscosity at 80: 70 Pa-s

Room Temp.: Amorphous

Curing temperature-time was the same as glass fiber cloth sample, i.e. 150°C-1h + 200°C-3h + 230°C-3h.

Prepared hollow conductor samples

Thin Aluminum foil was wound over the cured prepreg tape for the break down tests.

Four conductor samples were prepared. Size of conductor was 12 x 12 x 300 mm³. After curing, Teflon tape was removed and we inspected cured samples. Then we observed there were no tape peelings or no partial loss of resin.

Room Temp.: 25.5 °C, Humidity: 52.0 %

SUMMARY

- R&D status of Cyanate ester resin are briefly summarized.
- The initial test of prepreg tape of Cyanate ester resin showed very good results on the electrical insulation performance.
 - Breakdown voltages were sufficiently high, and were almost two times higher than normal Epoxy and BT resins!
 - The discharge mark left on the insulation layer is only one and circular shape.
 - Location of the mark is almost the center of the flat plane of the conductor surface and not at the edge.
- Cyanate ester resin can form the good electrical insulation layer on the magnet conductor (Copper) from prepreg tape winding.

- Test of radiation hardness will be performed in 2020.
- R&D on UV resin is just started.
 - main components of the UV-resin are Acrylate oligomer (pre-polymer) or Acrylate monomer.
 - Because of the wide variety of Acrylate esters, we will be able to find some appropriate UV-resins with reasonable mechanical strength, electrical insulation performance and radiation hardness.
 - However, at present, we are using the UV-resin for rapid maintenance of small defects of insulation layers at the coil surface.
 - We must eagerly seek and acquire knowledge and experience about the UV resin.

ACKNOWLEDGMENT

- Mitsubishi Gas Chemical Company, INC. for providing the newest information of their Cyanate ester resins.
- Nihon Rika Industries Corp. for their contribution for preparing the prepreg glass cloth sheets and tapes.