Over-current test on an intra-layer no-insulation (LNI) REBCO coil under a high background

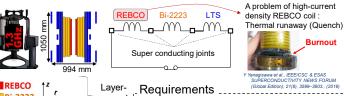
Y. Suetomi^{1,2}, S. Takahashi^{2,3} T. Yoshida^{2,3}, R. Piao², Y. Yanagisawa², T. Takao³, G. Nishijima⁴, H. Kitaguchi⁴, Y. Miyoshi⁵, M. Hamada⁵, K. Saito⁵, H. Maeda^{2,6}

Bi-2223

LTS: NbTi + Nb₃Sn

Primitive designs by Hamada, JASTEC

1: Chiba University, 2: RIKEN, 3: Sophia University, 4: NIMS, 5: JASTEC, 6: JST

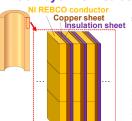

International Conference on Magnet Technology Vancouver Canada I 2019

☐ Test results : Overview

Part of the present work was supported by the JST Mirai-Program Grant Number JPMJMI17A2 and Grant-in-Aid for JSPS Fellows Grant Number 19J11812

1. Background: Towards 1.3 GHz NMR

☐ Our target : Persistent mode 1.3 GHz NMR magnet



Layerwound

- To generate 30.5 T by LTS/Bi-2223/ **REBCO** layer-wound coil · To protect a high-current density
 - (>300 A/mm²) REBCO layer-wound coil against thermal runaway(quench);

☐ Possible protection method for a REBCO layer-wound coil

"intra-Layer No-Insulation (LNI)" method Y Suetomi et al., SuST, 32, 045003 (2019)

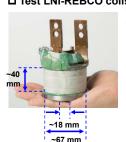
Advantage

- ✓ Short field delay
- Self-protection Homogeneous field decay in the axial direction during quench.

The effectiveness of an LNI coil under the

- following conditions has not been revealed
- Practical number of layers (~100) Under high-fields (~20 T)

It is possible that an LNI-REBCO coil will be mechanically broken due to unbalanced electromagnetic forces as seen in cases of NI DP coils.

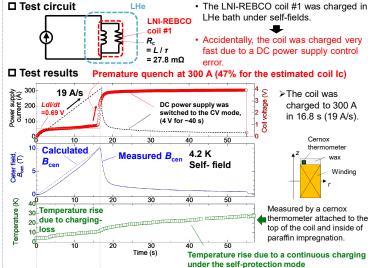

Objective of this study

To reveal self-protection behaviour of an LNI-REBCO coil comprising practical number of layers under high-fields.

Two cases of quench in LNI-REBCO coils are studied in this work.

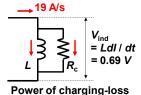
2. Quench experiments in LNI-REBCO coils

☐ Test LNI-REBCO coils



#1 coil: 162 layer

Parameters	#1 coil	#2 coil
Conductor Type	SuperPower Inc. SCS4050	
Winding	LNI	
Inter-layer material	Cu+PET sheet (26 µm)	
Impregnation	Paraffin wax	
Overbanding material	Ni-alloy tape	
Coil I.D. / O.D. (mm)	17.5 / 63.18	17.6 / 66.95
Coil height (mm)	40.1	40.1
Number of turns	1442 (~9 ×162)	1604 (~9 ×180)
Field constant for coil center (mT/A)	32.2	35.1
Self-inductance (mH)	36.2	47.7
*Field delay time constant at 4.2 K and Self-field (s)	1.3	0.36


#2 coil: 180 layer *Measured by an energy dump experiment at just before the following experiments.

CASE I: Accidentally high-speed charging (LNI-REBCO coil #1)

 $T_{cs} = 57.9 \text{ K at } 300 \text{ A}.$ Thus, max. temperature in the winding should have reached this value just before the quench.

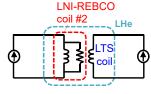
(A) Heating by charging-loss due to high-speed charging

 $Q = V_{ind}^2 / R_c = 17 \text{ W}$

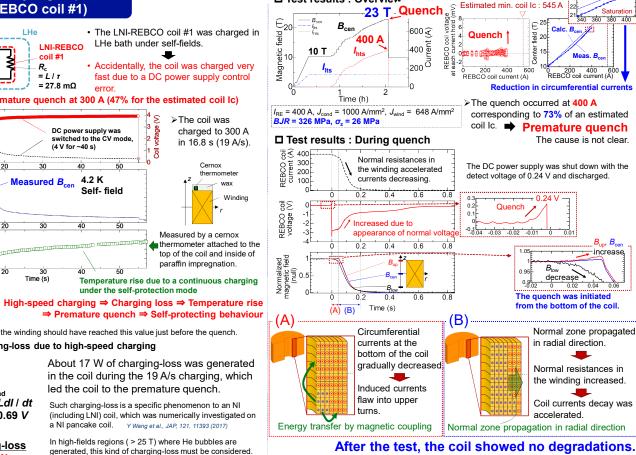
About 17 W of charging-loss was generated in the coil during the 19 A/s charging, which led the coil to the premature quench.

Such charging-loss is a specific phenomenon to an NI (including LNI) coil, which was numerically investigated on a NI pancake coil. Y Wang et al., JAP, 121, 11393 (2017)

In high-fields regions (> 25 T) where He bubbles are generated, this kind of charging-loss must be considered. We will conduct a further investigation on this issue.


Short summary

17 W charging-loss was generated in the LNI-REBCO coil during a 19 A/s charging, which led the coil to a premature quench.


CASE II: Quench under 23 T (LNI-REBCO coil #2)

□ Test coil configuration and circuit

LNI REBCO coil was charged in LHe under 10 T of the LTS coil field.

Short summary

The LNI REBCO coil was protected from a quench under a high-field of 23 T.

Conclusion

- High-speed charging led the LNI-REBCO coil to a premature quench. It is important to care about a sweep rate under high-fields with He bubbles.
- The LNI-REBCO coil was protected from the quench under 23 T without mechanical degradation due to unbalanced electromagnetic forces.

	CASE I : #1 coil High speed charging quench	CASE II : #2 coil 23 T quench	CASE III : #2 coil 31 T quench ⇒Fri-Mo-Or27-02
Center field (T)	10	23	31
External field (T)	-	10	17
Quench currents (A)	300	400	290
Quench type	Premature	Premature	Premature
Cause of quench	Temperature rise due to charging-loss	? (Ic estimation error?)	? (He bubbles + Joule heating?)
Action after quench	Continuous charging under the CV mode of 4 V for 40 s	Detection with 0.24 V and discharge in 0.2 s	Detection with 0.2 V and discharge in 3 s