Investigation of the Tape Shaped RHQT-Processed Nb3Al Conductors Kyohei Yamada^{1, 2)}, Akihiro Kikuchi¹⁾, Yasuo lijima¹⁾, Shigeki Nimori¹⁾, Kiyosumi Tsuchiya³⁾, Xudong Wang³⁾, Norihito Ohuchi³⁾, Akio Terashima³⁾, Yoshimitsu Hishinuma⁴⁾, Kazuya Takahata⁴⁾, Toshiyuki Mito⁴⁾, Shinsaku Imagawa⁴⁾, Shinji Hamaguchi⁴⁾, Hidetoshi Oguro⁵⁾ and Tomoaki Takao²⁾ * This work was supported by the NIMS Project Research from FY2016-FY2022 and LHD Project Collaboration Research of NIFS. - 1) National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan - ²⁾ The Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan - ³⁾ High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan - ⁴⁾ National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan - ⁵⁾ Tokai University, 4-1-1 Hiratsuka, Kanagawa 259-1292, Japan #### 1. BACKGROUND → React & Wind method is preferable for a coil fabrication. → Nb₃Al wires are promising for React & Wind method. #### 2. RAPID HEATING/QUENCHING & TRANSFORMATION (RHQT) NB3AL - → Ductile Nb-25%Al solid solution were synthesized after the RHQ. - → Cu stabilizer was fabricated after the RHQ by a reel to reel electroplating. - \rightarrow The RHQT-Nb₃Al shows much larger J_c (4.2 K, 12 T) than the diffusion processed Nb₃Al. $(800 \text{ A/mm}^2 \rightarrow 1,600 \text{ A/mm}^2)$ ## 3. FORM CHANGE FROM ROUND WIRE TO TAPE FOR MINIMIZING OF BENDING STRAIN - → Ductile Nb-25%Al solid solution wire could be rolled to tape at room temperature. - → Final thickness of the RHQT-Nb₂Al multifilamenry tape is about 0.2 mm. Its width is 4.6 mm. - → The RHQT-Nb₃Al multifilamenry tape is much improved mechanical flexibility. #### 4. SUPERCONDUCTING PROPERTIES OF RHQT-NB3AL TAPE - → The RHQT-Nb₃Al tape does not show both low field instability and anisotropy. - → Ic at 4.2 K and 18 T became double by the reduction of area (R_A) of 10 %. Then, it gradually decreased with increasing R_{A} . - \rightarrow Non Cu J_c increase with increasing the reduction of area up to 25 %. - \rightarrow B_{c2} (4.2 K) apparently increased by a form changing from wire to tape, and T_c slightly increased. ## 5. RELATIONSHIP BETWEEN I_C AND BENDING STRAIN ON RHQT-NB₃AL TAPE ## 6. NEW CABLE: SIX RHQT-NB3AL TAPES AROUND CU STABILIZER PLATE → The RHQ-Nb₃Al tapes were soldered on the brass fixture having different radius. \rightarrow I_c (4.2 K) were measured by 4 probe method under the magnetic field up to 18 T. $\rightarrow I_c$ (4.2 K) did not change by applying the maximum bending strain up to 0.662. - → We propose new designed large current capacity cable using the RHQT-Nb₃Al tapes. - \rightarrow 0.2 mm thick six RHQT-Nb₃Al tapes are lapped around Cu stabilizer plate with 17 mm in width and 3 mm in thickness. - o This new cable can be minimized the bending strain, and the Cu electroplating process can be skipped as well.