A Study on the Improvement of the Correction Coefficient Considering the 3D Effect of Spoke Type Permanent Magnet Synchronous Motor

${ }^{1}$ Department of Electrical Engineering, Dong-A University, Busan, Korea

Abstract

In permanent magnet synchronous motors (PMSM) that do not use reluctance torque, the most important performance indicator is the no-load back electromotive force (EMF) that represents the torque constant. In general, the magnetic flux is on a two-dimensional (2D) plane perpendicular to the axial direction. Thus, 2D Finite Element Analysis (FEA) is used for performance analysis of motors. However, in the Spoke type PMSM, which is being actively studied recently due to its high power density, the field flux passes fheng a three-dimensional (3D) path containing axial components. This is in contrast to the existing field fux of
PMSM on a 2D plane perpendicular to the axial direction. Therefore, unlike the PMSM of the magnetic flux PMSM on a 2D plane perpendicular to the axial direction. Therefore, unlike the PMSM of the magnetic flux
non-concentrating type, which can be fairly accurate no-load back EMF analysis even with 2D FEA non-concentrating type, which can be fairly accurate no-load back EMF analysis even with 2D FEA,
analysis of the no-load back EMF of Spoke type PMSM needs to be performed with 3D FEA. In this paper, we propose a correction coefficient that allows us to consider 3D effects due to axial leakage flux and axial linkage flux generated in spoke type PMSM. The proposed correction coefficient is multiplied by Br of the permanent magnet (PM), which enables 2D FEA analysis with fast analysis time similar to 2D FEA and high analysis accuracy of 3D FEA. The validity of the analysis method with the proposed correction coefficient was performed through 2D and 3D FEA for various models.

1. Introduction : 3D effect of Spoke type PMSM

Spoke type PMSM rotor cores are separated by nonmagnetic PM and are connected only through a magnetic
saturated thin bridge. Since the saturated thin bridge. Since the
magnetically saturated core is nonmagnetic, each pole of the rotor core is magnetically separated from one another. The magnetic potentials of the poles of the rotor core adjacent to each other in the magnetizing direction of the
permanent
magnets permanent magnets disposed
symmetrically about the rotor pole are the same in magnitude and opposite in polarity. As a result, the magnetic potential difference between the poles of adjacent rotor cores generates a 3D
leakage flux through the axial direction

2. Calibration coefficient calculation process

path ignored

The linkage flux per pole of the calculated Spoke type PMSM is shown in Eq. (1) by using the MEC of Fig. 2 (a) in which axial magnetic paths are ignored. In Equation (1), all terms are linear functions of the stack
length L, length L_{s}. Using this, each term in Eq. (1) can be represented by the stack length L_{s} and the term
excluding it. excluding it.
\qquad ---- (1)

Next, the linkage flux per pole calculated with Fig. 2 (b) where the axial magnetic path is considered is shown in Eq. (2). As in equation (1), all terms except for the axial magnetic path in Eq. (2) are linear
functions of stack length L. Using this, each term in Eq. (2) can be expressed by separating the stack length L_{s} and the terms excluding it.
\qquad - - (2)

Now, if the axial magnetic path of the pole (1) is divided into the linkage flux per pole, which is calculated by considering the axial magnetic paths (2), the axial 3D effect of the Spoke type PMSM with 2D FEA The Eq. (3) for the calibration coefficient k that can be considered can be obtained.

$$
k=\frac{\lambda_{30, L_{4}}}{\lambda_{20, t_{4}}}=\frac{\frac{M_{1}\left(M_{1} L_{s}+M_{4}\right)}{\left(M_{2}\right) L_{3}+M_{3}+M_{4}}}{\left\langle M_{1} \lambda\right.}=\frac{\left(M_{1}+M_{2}\right)\left(M I_{1}+M_{4}\right)}{M_{1}\left(\left(M_{1}+M_{2}\right) L_{s}+M_{3}+M_{4}\right)}
$$

\qquad

3. How to use the calibration coefficient

By using the proposed calibration coefficient, the analysis result equivalent to that of 3 DFEA can be obtained through 2 D FEA. The calibration coefficient is a method of using the new residual magnetic flux density Br * multiplied by calibration coefficient in the 2 F FEA instead of the actual residual magnetic flux density Br of the permanent magnet as shown in Eq. (11).

The value of 3 D FEA analysis for the model with the stack length of L_{1} divided by the $2 D$ FEA analysis result can be defined as Eq. (4).

Eq. (5) can be obtained by performing the same calculation as in Eq . (4) for a model with stack length L_{2}
$\frac{\lambda_{30} \text { Era, } L_{2}}{\lambda_{20}}=\alpha_{2}=\frac{\left(M_{1}+M_{2}\right)\left(M_{2} L_{4}+M_{4}\right)}{M_{2}\left(\left(M_{+}+M_{2}\right) I_{2}+M_{4}+M_{1}\right)}$
By solving the Eq. (4) and Eq. (5), M_{3} and M_{4} can be expressed by the equations of M_{1} and M_{2} as in Eq. (6). $M_{4}+M_{4}=\underline{\left(M_{1}+M_{2}\right)\left(I_{2}\left(1-\alpha_{2}\right)-L_{1}\left(1-\alpha_{1}\right)\right)}$

To simplify Eq. (4), M_{4} in the second parentheses, which is located in the numerator of Eq. (4), must be expressible by the value of M_{1}. In order to do this, we can derive Eq. (7) using the ratio β of the linkage flux per phase calculated by the $3 D$ FEA of the stack lengths L_{1} and L_{2} and the Eq. (2).

$$
\begin{equation*}
\lambda_{3} \tag{7}
\end{equation*}
$$

Eq. (7) can be summarized as Equation (8). If the left side of Eq. (8) is replaced with X, Eq. (8) is expressed as Eq. (9).
$\beta \frac{\left(1-\alpha_{4}\right) L_{4}}{\left(1-\alpha_{2}\right)}=\frac{M_{1} I_{2}+M_{4}}{M I_{4}+M} \quad------------$ - (8) $\quad M_{4}=\frac{M_{1}\left(x I_{4}-I_{2}\right)}{1-X}$ \qquad -- (9)

Now, substituting Eq. (6) and Eq. (9) into Eq. (3) gives the final expression for the calibration coefficient expressed in Eq. (10).

$$
k=\frac{\left(\alpha_{2}-\alpha_{1}\right)\left(L_{s}+\frac{\left(I_{2}-X I_{1}\right)}{(X-1)}\right)}{\alpha_{2}\left(I_{s}-I_{2}\right)-\alpha_{1}\left(I_{s}-I_{1}\right)+\left(I_{2}-I_{1}\right)}
$$

\qquad
-- (10)
4. Verification using commercial 3D FEA SW

To verify the validity of the proposed calibration coefficient, three types of Spoke type PMSM models were used, as shown in Table 1. (Using commercial Jmag Designer V16)

Table 1 . Main specification of verification analysis model
Spec.
Mp $/$ Ns
Model 1
Motor
Shape

Type	$\begin{aligned} & \text { Stack } \\ & \text { Length } \end{aligned}$	Conventional2D FEA		Conventional 3D FEA		$\begin{aligned} & \text { Proposed } \\ & 2 \mathrm{D} \text { FEA (with } \mathrm{k} \text {. } \end{aligned}$	
		EMF $\mathrm{V}_{\text {ms }}$	Tme[sec]	EMF $\mathrm{V}_{\text {mas }}$	Tmelsec]	EMF $\mathrm{V}_{\text {mad }}$	Tme[sec]
Model 1	20	21.90	52	20.10	6,210	20.27	132
	30	32.85	\uparrow	30.99	15,420	31.18	\uparrow
	40	43.80	\uparrow	41.92	18,576	42.11	\uparrow
Model 2	20	12.84	60	11.96	10,170	12.02	158
	30	19.26	\uparrow	18.35	18,328	18.42	\uparrow
	40	25.67	\uparrow	24.77	21,350	24.83	\uparrow
Model 3	20	12.27	74	11.53	7,446	11.49	169
	30	18.41	\uparrow	17.65	16,388	17.70	\uparrow
	40	254.54	\uparrow	23.79	19,496	23.86	\uparrow

9. Conclusion

Spoke type PMSM has a problem that magnetic fluxes are generated in the axial direction, so that accurate performance characteristics cannot be analyzed with a conventional 2D FEA. While accurate analysis could be performed with 3D FEA excessive analysis time is typically required. In this paper, the problems of the existing analytical techniques are solved by 2 D FEA with correction coefficient that can consider the characteristic change by axial magnetic path. Using the correction factor proposed in this paper, we can secure the fast analysis of 2D FEA and high accuracy of 3D FEA simultaneous In addition, the process of calculating the correction coefficient is relatively straightforward. It is expected to be of great help engineers designing Spoke type PMSM for potential applications

