

Development and test results of a superconducting joint resistance evaluation system

Kensuke Kobayashi, Akira Uchida, Munenori Amaya, Gen Nishijima, and Hitoshi Kitaguchi National Institute for Materials Science (NIMS), Tsukuba, Japan

L: circuit inductance (\sim 0.5 μ H@1-turn)

R: circuit resistance ($<10^{-12} \Omega$)

Experiment procedure

Temperature 10 0.10 > 5. Waiting (sample temperature stabilization) ← PCS heater 6.ICC OFF ← holder 0.00 7. Measurement of Hall sensor output 4000 (current of sample loop) Time (sec.) Sample holder Instruments overview PT cryostat Injection coil _ \$100 mm Joint Sample holder Hall sensor \times 2 690 mm Difference between two Hall sensors Compact and easy sample exchange design → Cancelling BKGD field noise

Commissioning results

Decay curves of various injection currents at 4.1 K. Injection currents are reference values.

Fitting results of current decay. Black lines indicate $V = V_0 \exp\{(-R/L)t\}$.

Injection current dependences of resistance for sample#1, #2 and #3. All samples were on the order of $^{\sim}10^{-14} \Omega$.

Magnetic field dependences of injected

current at several temperatures. Blue

Temperature dependences of injected current under various magnetic fields. Red arrows indicate T_c under B.

 B_{c2} (\blacksquare) and T_c under B (\blacksquare) plotted as a function of temperature. Dotted line is a guide to the eyes.

Summary

arrows indicate B_{c2} .

Evaluation of superconducting joints

 $>R_i$ of 10⁻¹⁴ Ω order successfully evaluated in 1 hour. $\triangleright I_c$, B_{c2} vs T could be measured.

Future work

- ✓ Precise quantification of injected current.
- ✓ Angular dependence measurement in *B*.

Achievement

 $10^{-8} \sim 10^{-15} \Omega$ Joint resistance: Sample temperature: 3 ~ 120 K ~3 hours RT to 4.2 K: ~450 A (1 turn) Max. sample current : Magnetic field: 0 ~ 3 T

Acknowledgement

This work is based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO) [No.16100555-0] and JST-MIRAI Program Grant Number JPMJMI17A2, Japan.