

The Mechanical Analysis of the Rutherford Cable Subjected to Axial Tension and Cyclic Loading

Libin Jiang, Junjie Zhao, Yuanwen Gao Email: ywgao@lzu.edu.cn

College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China

> Introduction

- The main high field superconducting magnets of all existing large particle accelerators are based on Rutherford cables.
- Future Circular Collider(FCC) and High Luminosity upgrade of Large Hadron Collider (HL-LHC) are proposing new requirements of 16T.
- Nb₃Sn Rutherford cables are designed to cater to the meet in the higher field for their advantage:
- large filament dimensions
- lower thermal and electrical properties of copper
- the wind-and-react technique

> Problem

- ✓ cable winding process:
- Mechanical Loads: tension, compression, bending, torsion
- Mechanical Instability: "pop-out", "protrusion"
- Large Temperature Change: thermal residual stress
- ✓ Magnets Running: the influence of electric field, magnetic field, and temperature field

Requiring a method to build up the Rutherford cable element efficiently and simulate the mechanical behaviors during the whole process.

> Model

Geometrical modeling

 $z_1 = kx \cos \kappa + \frac{n-4}{n}Dk \qquad z_2 = \frac{p}{n-2}t + \frac{n-2}{n-2}Dk$

strands number (n) \checkmark lay angle (α) \checkmark chirality (c) \checkmark strand diameter (d) \checkmark clearance (δ) D=d+ δ , R=D/2, $\alpha \in (0,\pi/2)$, $t \in (0,1)$, $\theta = t*180-90$, p=D/cos α , k=tan α , $h_p = \frac{n-2}{2}Dk + \frac{p}{2}$, $h_{\Delta} = \frac{2h_p}{n}$

The straight wires

The helical wires $x_1 = \frac{n-2}{2}Dt - \frac{n-2}{4}D \qquad x_2 = (R\cos\theta - \frac{n-2}{4}D)\cos\kappa$ Parametric equation of wire i

 $\chi = \chi_m$

 $y = cy_m \cos \kappa$

 $z = z_m + jh_p - (i-1)h_{\Delta}$ $\kappa = j\pi \ (j=0,1,2,...)$

m=1, straight lines; m=2, helical lines. c=1,right-hand twisting; c=-1,left-hand twisting

- Mechanical modeling
- ✓ Damage of filaments ✓ Representative volume element (RVE)

Results and discussion

Single strand axial tensile

✓ The strain-stress curve of the single strand is in good agreement with the experimental data.

Rutherford cable axial tension and cyclic loading

- ✓ The superconducting region bears larger stress than the copper regions.
- ✓ The stress distribution is antisymmetry at the end cross-section.
- ✓ Stress concentration at the cable edge in X direction and the contact area between wires.
- ✓ Several wires are "pop-out" because of the big tensile load.

- ✓ When the strain is the same, the bigger friction coefficient, the bigger stress.
- ✓ There are hysteresis loops when the model is bearing cyclic tensile loading.
- ✓ The occurrence of hysteresis loops is not the result of the friction.
- ✓ The hysteresis loop's area increases as the cycle number increases at first.

> Conclusions

- ◆Develop a method to build up Rutherford cable's geometry efficiently, considering strand numbers, lay angle, chirality and so on.
- ◆Analyze the finite element model of Rutherford cable under axial tension and cyclic loading, while taking the friction and filaments damage into consideration.
- ◆The axial tensile load during manufacture process may contribute to the "pop-out".
- The friction has an obviously effect on Rutherford cable's mechanical behavior when applied to tensile load.
- Rutherford cable's structure and the strands' hysteresis characteristics contribute to the hysteresis loops in the cyclic tensile loading.