

MT 26 International Conference on Magnet Technology Vancouver, Canada | 2019

Construction and Power Test of the Superferric Skew Quadrupole for HL-LHC

Marco Statera
INFN Milano - LASA

OUTLINE

- Scope: the High Order correctors magnets
- Design
- Construction and power test
- Electrical failure
- Second assembly and power test
- Conclusions

High Luminosity LHC

LHC integrated luminosity 300 fb⁻¹ by 2023

HL LHC

upgrade interacting regions 2024/26

3000 fb⁻¹ integrated luminosity by 2038

LHC / HL-LHC Plan

EXCAVATION / BUILDINGS

THE LOW BETA SECTION

and the High Order Correctors

HO CORRECTOR MAGNETS ZOO

MCSXFP1

MCOXFP1

MCQSXFP1

design construction test 5 protoptypes 54 series magnets

MgB₂ demonstrator

S. Mariotto
Tue-Af-Po2.18-06
M. Statera, MT26 Vancouver

SUPERFERRIC DESIGN

NbTi superconding coils

Racetrack

coils

ARMCO iron

Insulation by S2 glass reinforced material

Superferric design

- Compact and modular
- Strong contribution of the iron poles
- Field quality influenced by the shape of the poles

constraints

- Longitudinal dimension
- Quench protection
- Small dimension: 84kN series production (6 magnets)

magnet	Ic @ 4.2 K	Margin @4.2 K	Margin @1.9K
4P S	315.5 A	42.3 %	57.1 %
6P	225.5 A	53.4 %	>60 %
8P	230.2 A	54.4 %	>60 %
10P	255.7 A	58.9 %	>60 %
12P N	232.6 A	54.9 %	>60 %
12P S	230.2 A	54.4 %	>60 %

Quench protection

- No energy extraction (but 4P)
- 60% margin @ 1.9 K

M. Statera, MT26 Vancouver

MCQSXFP1

length	538 mm
integrated field @ In @ r50 mm	0.700 Tm
magnetic length	401.1 mm
energy @Inom	30.8 kJ
harmonics	B6= -30 U at low current B6= 30 U at I _{op} B10= -8 U ÷ -12 U

- COILS
 - 754 windings

connections on a PCB board (Arlon N85)

EM DESIGN

- nominal current 174 A field integral 0.7 Tm
- ultimate current 197 A

modifed ideal pole shape (wire EDM laminations)

QUENCH protection OPERA + QLASA 1.5 Ω dump ressitor ground in the middle max temperature 145 K max voltage 235 V

First Cooldown and Energization

Training up to nominal

Electrical problem

Event n.13 B4

- Precursor
- Recovered transitions in different coils

Event n.15

Damaged Coil

Numerical Model

Numerical model implemented in LTSpice, Netlist forma (M. Prioli) Coil 1 split into two parts:

 Discharges between output wire and windings

Inner layers not damaged

- Coil 1A: 7 high-field layers bypassed by a short-circuit
- Coil 1B: 19 layers normally in series with the rest of the circuit
- Mutual inductance matrix (5 x 5) computed in Opera (S. Mariotto)
- Quench originated in the high-field zone (Coil 1A)
 - The resistance is not evenly distributed between coil 1A and coil 1B
 - Simulated distribution is 37% for coil 1A and 63% for coil 1B
- The short resistance is a variable
 - It is initially high (~10 Ω), then decreases due to a local welding (~0 Ω) then increases (~1 Ω)

Numerical Model: Results

Two New Coils

- all coils compliant
- the 2 new coils installed

Second Assembly Assessment

Coil

- Geometry
- HV ground insulation (2,5 kV)
- Wire-wire insulation, turns

All coils are compliant

Magnet

- Laminations' profiles and slits
- Alignment of the assembly
- HV ground insulation of the magnet (up to 2 KV)

procedures validated

- second assembly
- o coil replacement

Power Test

Most quenches in new coils

Good stability after reaching 200 A (> I_{ult} 197 A)

Stable 1 h @ ultimate after thermal cycle

MAGNETIC FIELD AND INDUCTANCE

Single Hall Probe

Dinamic inductance measured during current ramps

Field quality measurement at LASA in 2019

Conclusion

- The HL-LHC skew quadrupole corrector magnet was successfully designed and assembled
- First power test had an electric failure
 - The fault has been identified
 - A mitigation was applied even if all the non damaged coils are compliant, also for series production
 - New quality test introduced
- Second assembly power test showed good results: ultimate current reached, stability test (1 h @ultimate), good quench memory
- Procedures validated
- All High Order Correctors protoypes tested

