Mon-Mo-Po1.07-05

MT 26 International Conference on Magnet Technology

Superconducting stage actuation

Gudrun De Gersem (ASML), Roger Hamelinck (Entechna), Bart de Bruyn (Prodrive and TU/e)

Context

In litho equipment, high productivity and sub-nanometer precision of motion stages are combined to enable shrink in chip production at reasonable cost.

Superconducting motors are an option for long-stroke motion, driving large masses at a precision of a single micrometer.

Reticle (mask) stages

- Linear synchronous motor
- Highest accelerations: 160-320 m/s²
- Moving mass payload/motor: ~85/40 kg

Wafer stages

- Planar XY synchronous motor
- 40-100 m/s² + Levitation
- Moving mass payload/motor: ~100/40 kg

Target HTS linear stage

3x faster → Justify the risk and effort

- 10 m/s, **1000m/s**² for 85 kg payload
- +30% force for damping and servo control

<1µm positioning performance

Force variation < 10%, unrepeatable error < 1%

Energy efficiency higher than conventional

Mature for usage in semiconductor industry

 Downtime budget incl. recovery to full production < 20 min/machine/year

Challenges

Manufacturing tolerances

- Magnet-to-magnet in-plane tolerance <150 μm
- Tolerances at cryogenic temperature → shrink and shrink repeatability

Static & dynamic loads

- HTS cable stability
- kN interaction forces
- Positioning stability under dynamic loads
- Cryostat moving ~50m/s2
- Fatigue for >1e9 cycles

Availability

- In-situ serviceability
- Spare part within reasonable cost
- Minimize quench (propagation) & cooldown time
- Tens (hundreds) HTS coils → < 0.0001/coil/yr failure

Picture source VDL ETG

Cleanliness

- Ultra-clean vacuum
- No particles to be shed from motor

Efficiency

- Thin cryostat wall in actuator gap
- Reduce AC loss
- Cooling efficiency

ENTECHNA ENGINEERING

Concept

+ moving Alu coils AC HTS coil array + moving NdFeB magnets Figure from (1)

3.5x higher force/volume for same cooling power w.r.t. conventional (1)

Losses from AC field over DC-HTS
Accuracy by current steering

Alu coils: well known

2x higher force/volume ⁽¹⁾, and moving NdFeB 3x heavier than Alu → less acceleration

Losses from AC current in HTS + AC field from mover

High-accuracy AC steering of HTS coils required

(1) de Bruyn, B. J. H. (2018). *Superconducting linear motors for high-dynamic applications*, PhD Dissertation, Eindhoven: Technische Universiteit Eindhoven

Expected HTS coil loads

200 Specific power: P_{in}/P_{cool} at T_{operating} [-] Cryo input power for half motor [kW] AC losses for benchmark [mW/cm³] 800 600 400 200 400 Operating temperature [K]

AC losses

- Moving coils induce AC field in DC-steered HTS coils
- 20-50K operating temperature for cooling efficiency
- 50-200 mW/cm³ AC losses

Forces on HTS coil

- Fcoil-coil XY >150 kN/m², Z >200 kN/m², static
- Factuation >250kN/m², dynamic \in [10-1000]Hz
- FHTS-to-backIron >450 kN/m², static
- Quench/emergencies: to be determined

Fcoil - coil - coil - Fcoil - coil -

Conclusions

- Superconducting motors can offer higher cost efficiency for lithographic equipment
- High accuracy specs induce challenges to manufacturing tolerances and dynamic stability
- Dynamic loads challenge the mechanical design and fatigue strength in cryogenic conditions
- Dynamic loads induce AC losses and require adequate cooling techniques to maintain cost efficiency