

Mon-Mo-Po1.04-10 [42]

18 T hybrid dipole for an LHC energy doubler

Peter McIntyre¹, Jeff Breitschopf³, Daniel Chavez⁴, Joshua Kellams⁵, and Akhdiyor Sattarov²

¹Accelerator Research Lab, Texas A&M University and ²Accelerator Technology Corp.

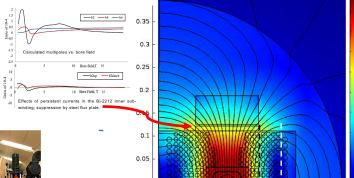
p-mcintyre@tamu.edu

Abstract: We report the design for a hybrid block-coil dual dipole using advanced cable-in-conduit windings. The dipole is designed for use in the arcs of an energy-doubling lattice in the LHC tunnel.

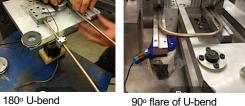
The block-coil design facilitates configuration of hybrid sub-windings of Bi-2212, Nb₃Sn, and NbTi, each operating to the same fraction of critical current. The cryogenics utilizes supercritical helium, operating in the window 4.2-4.6 K. A novel support structure provides robust support and stress management. The three sub-windings can be separately wound and heat-treated and then assembled and preloaded to complete the dipole.

I. Cable-in-Conduit Technology = SuperCIC

1. Perforated center tube

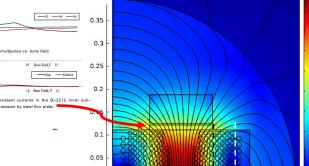


3. Pull cable through sheath tube as loose fit

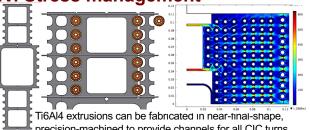

13 kA CIC for JLEIC dipole 4 Draw sheath tube onto cable to compress wires against center tube

Con current			20		I KA
Operating temp range			4	4.2-4.6	K
2-la	yer CIC sub	-windings:			
	NbTi:	# layers, turns/bore	1	14	
		# wires, wire dia.	16+22	1.2	mm
		B _{max} in sub-winding		7.3	T
	Nb₃Sn:	# layers, turns/bore	4	80	
		# wires, wire dia.	17+23	0.88	mm
		B _{max} in sub-winding		12.4	Т
	Bi-2212	# layers, turns/bore	4	68	
		# wires, wire dia.	17+23	0.88	mm
		D. in sub-cut-strading		10.4	-

II. SuperCIC Coil Technology



Completed 24-turn CIC winding


ATC manufactures 140 m lengths of SuperCIC – product for sale!

III. 18 T hybrid-coil dual dipole

Coll current			28		KA
Operating temp range		4	4.2-4.6	К	
2-la	yer CIC sub	-windings:			
	NbTi:	# layers, turns/bore	1	14	
		# wires, wire dia.	16+22	1.2	mm
		B _{max} in sub-winding		7.3	Т
	Nb₃Sn:	# layers, turns/bore	4	80	
		# wires, wire dia.	17+23	0.88	mm
		B _{max} in sub-winding		12.4	Т
	Bi-2212	# layers, turns/bore	4	68	
		# wires, wire dia.	17+23	0.88	mm

IV. Stress management

precision-machined to provide channels for all CIC turns. Stress in wires is everywhere <120 MPa.

V. Developing 2-layer SuperCIC using Nb₃Sn, Bi-2212

NbTi:

It is critically important to interpose a multi-layer spiral wrap over-wrap that provides a slip-surface between inner and outer lavers, and also a spiral over-wrap on the outer laver that provides a slip-surface. For 2-layer cable, those issues required a multi-layer over-wrap between wire layers

Nb₃Sn:

It is critically important to interpose a multi-layer spiral wrap over-wrap that provides a slip-surface between inner and outer lavers, and also a spiral over-wrap on the outer laver that provides a slip-surface. For Nb₃Sn it was necessary to adopt different materials for the slip-planes and sheath tube from what worked for NbTi SuperCIC.

Bi-2212:

Bi-2212/Ag wire is soft and has limited strength. Multi-layer over-wrap foils are used to provide two distinct functions: Havnes 214 diffusion barrier foil prevents diffusion between wires and the center tube and sheath tube; slip-surface foil enables wires to re-arrange small-radius ends are formed. The Haynes 233 sheath on the Bi-2212 SuperCIC provides pressure containment during 880 C over-pressure heat treatment - no need for high-pressure furnace.

The Bi-2212 and Nb₃Sn sub-windings are fabricated and heat-treated as separate sub-assemblies.

The SuperCIC cables of NbTi, Nb₃Sn, Bi-2212 are powered in series with the same critical current in each sub-winding minimum quantity of CIC turns, expensive superconductor.

Total superconductor cross-section, wire cost for one 15 m dual dipole

(present-day commercial quotes for small quantity)

<u>uperconductor</u>	Wire cross-section	Wire cost/m	Wire cost for one dual dipole
bTi	24 cm ²	\$3.60/m	\$119 K
b₃Sn	78 cm ²	\$6.56/m	\$1,345 K
i-2212	66 cm ²	\$64.77/m	\$11,275 K

2-laver NbTi CIC

U-bend with single-layer

Solution: No damage using multi-layer functionalized

2-layer Nb₃Sn CIC: cross-section half-way around a bend

VI. Super-critical He cryogenics

All windings are cooled by flow of SCHe through the 4.2 mm ID center tube in the SuperCIC. The Nb₃Sn sub-winding has the longest length:

Heat load/bore	1	W/m
SCHe flow	0.3	m/s
Temperature rise	0.3	K
Pressure drop	0.8	bar
PdV work	0.03	W