

CoCaSCOPE approach for High definition 3D finite element analysis of low temperature Rutherford cable

Pierre Manil¹, Gilles Lenoir¹, François Nunio ¹ ¹ CEA Paris-Saclay/IRFU, France

In the perspective of simulating and managing the mechanical stresses within strain-sensitive superconductors such as Nb₃Sn, we are proposing a multiscale numerical approach for 3D simulation of Rutherford cables, up to the filament scale, presented in [1],[2]. This poster summarizes recently developed features and results.

Preprocessor: impregnated cable model generation [3]

Bi-material strand model based on homogenization [2]

CONCLUSIONS

New features have been added to the CoCaSCOPE approach:

- Generation of the conformal mesh of the cable impregnation matrix in 3D
- Introduction of copper hardening at the microstructure level, taken into account in the homogenized bi-material strand model
- Automated script-based post-treatment of the experimental $\sigma(\epsilon)$ plots
- First identification of the microstructure parameters at cryogenic temperature (77K)

FEM 3D model

of the sample holder

(Cast3m)

Numerical identification of the microstructure parameters [4]

(loading curve with 3 unloadings) Scripted post-treatment locates unloadings and evaluates automatically the relevant slopes used for identification

Identification of the microstructure parameters is performed using ILCO routine [4] by iteration on an analytical strand model based on volume fraction. Identification results are injected in 2 FEM strand models (detailed model / bi-material model) for comparison with experimental plot.

IDENTIFIED PARAMETERS OF THE PIT BI-METALLIC MODEL AT ROOM TEMPERATURE / 77K

COMPONENTS	Model	E(GPa)	$\sigma_{\text{y}}(\text{MPa})$	C(MPa)	γ
Copper	Chaboche hardening	129/135	39/30	35960/25600	310/64
Barrier	Identical to copper				
Filament Core	Elastic	3/3	-	-	-
SC region (Nb₃Sn SG)	Elastic	171/145	-	-	-

Microstructure parameters (given at RT / 77K for PIT strand) can be used for predictive simulations, even for load cases significantly different from the ones used during the identification process.

Strain/stress analysis

can be performed

at the filament scale

after projection [2]