Design of a Tabletop Liquid-Helium-Free, Persistent-Mode 1.5-T/90-mm MgB2 "Finger" MRI Magnet for Osteoporosis Screening

Dongkeun Park*1, Yoonhyuck Choi¹, Yi Li1, Wooseung Lee¹, Hiromi Tanaka^{1,2}, Juan Bascunan¹, Jerome Ackerman³, Hideki Tanaka⁴, and Yukikazu Iwasa¹

- ¹ MIT Francis Bitter Magnet Laboratory/Plasma Science and Fusion Center, Cambridge, MA, USA;
- ² National Institute of Technology, Yonago College, Yonago, Tottori, Japan;
- ³ MGH Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, MA, USA;
- ⁴ Hitachi, Ltd., Japan;

OUTLINE

- ☐ Introduction MIT 1.5 T *Finger* MRI Project
- ☐ Preliminary Studies at the MIT FBML/PSFC
 - : Small-scale Prototype and Superconducting Joints
- ☐ Final Design Report
 - : SN₂-cooled, Shielded, 1.5-T/90-mm MgB₂ Magnet
 - : Active Shielded Gradient Coils
- Conclusion

LHe-Free Tabletop 1.5-T "Finger" MRI For Osteoporosis Screening

REQUIREMENT

Compact, Affordable Osteoporosis Screening MRI

Design, construction, test of *LHe-Free*, *iron-Shielded*, *persistent* 1.5-T/90-mm MgB₂ magnet.

Gradient coil design confirm and fabrication.

MRI system assembly.

Active-shield gradient coil design

MRI spectroscopy, amplifiers, power supplies System testing with phantom and specimen

Preliminary Researches at MIT

☐ Small-scale MgB2 magnets

(2017)

SN₂-cooled single coil with use of 76-m MgB₂ wire

(2018)

SN₂-cooled persistent two-coil magnet with 86-m MgB₂ wire

Construction, operation details to be presented:

Tue-Mo-Or9-05

(2019)

SN₂-cooled persistent 5-Coil MRI-field quality 1.5T/(RT)54mm magnet with 580-m MgB₂ wire

☐ Superconducting joint technique

Design Requirement and MgB₂ Wire

Field Intensity	[T]	1.5
Magnet Bore	[mm]	>90
Region of Interest, (DSV)	[mm]	25
Homogeneity (Peak-to-Peak)	[ppm]	<5
Temporal Stability	[ppm/hr]	<0.1
Radial 5-Gauss Fringe Field Radius	[m]	<0.5
Operating Temperature	[K]	10 – 15
Time 10 → 15 K in SN ₂ (cooler off)*	[hr]	>5

^{*}To Eliminate cryo-cooler vibration during scanning

Total length (Unit length)	1,400 (m)
Diameter	Bare 0.64-0.65 (mm) w/insulation 0.74-0.78 (mm)
Insulation	T-glass (typically 0.06 mm ^t)
Cross-section	-
Heat treatment	600 °C 12 hr
Ic	117 A at 15 K, 3 T > 200 A at 15 K, 2 T
N-index	30 at 20 K, 3 T (> 30 at 15 K, 2 T)

Magnet Design: Method

- ☐ Unshielded 6-coil design optimization by use of genetic algorithms with simulated annealing
 - Cost function is evaluated with different weight parameters:
 B0 (1.35 T), homogeneity (<5 ppm), length (<1.4 km).
 - Find the <u>lowest function value</u> within the magnet <u>size confinement</u>.
- ☐ Re-optimization with an iron-shield using 2D FEM
 - Parameter: B0 (1.5 T), fringe field (5-gauss at 0.5-m radius)
- ☐ Refine design using 3D FEM model with more detailed shapes of magnet taken into account.
- ☐ From cooled-down/energized dimensions to RT dimensions for manufacture.

Limit: Heat treatment inducing irreversible deformation, maybe occurred in MgB₂, is ignored.

Magnet Design: Main Coil

- Wire dimension from actual winding practice.
- Cooled-down, energized coil dimension.

Mid-plane symmetry	Coil 1-1	Coil 2-1	Coil 3-1
Wire (insulated) dimension	0.86 mm × 0.73 mm		
2r ₁ ; 2r ₂ [mm]	120.00; 138.98	144.00; 168.82	140.00; 169.20
z ₁ ; z ₂ [mm]	4.62; 17.52	30.46; 37.34	45.28; 90.00
# turns/layer; # layers	15; 13	8; 17	52; 20
Total length [m]	1,303		
I _{op} [A]	105		
Center field [T]	1.33		
Max field [T]	1.55	1.25	1.88
σ _{hoop} (EM only) [MPa]	16	15	22
Total inductance [mH]	619 (Stored energy: 3.4 kJ)		
Homogeneity @ 25-mm DSV [ppm]	1400		
5-gauss line [m]	(Radial) 1.01 ; (Axial) 1.28		

Magnet Design: Iron-Shield

	Shield 1	Shield 2-1	
Material	0.5-mm thick Silicon Steel		
	NGO 50PN1300		
2r ₁ ; 2r ₂ [mm]	220; 270	144; 270	
z ₁ ; z ₂ [mm]	-100.80; 100.80	100.80; 119.76	
Stack #	404	2× 38	
	Laser Cut		
Cutting Method			

Mid-plane symmetry	Coil 1-1	Coil 2-1	Coil 3-1
Center field [T]	1.33 → 1.5		
Max field [T]	1.73	1.45	2.21
σ _{hoop} (energ. only) [MPa]	17.4	17	26
Total inductance [mH]	720 (Stored energy: 3.97 kJ)		
Homogeneity @ 25-mm DSV [ppm]	1400 → 6.4		
Sensitivity with 0.1 mm error [ppm]	570	210	630
5-gauss line [m]	(Radial) 1.01 → 0.48 ; (Axial) 0.69		

Magnet Design: Analysis Results

Magnet Design: Manufacture Dimension

- ☐ Refine design with considering holes of an iron shield.
- ☐ RT dimension for manufacture determined by

Thermal contraction (Major) and

Deformation (Minor) by energization.

Mid-plane symmetry	Coil 1-1	Coil 2-1	Coil 3-1
Δ2r ₁ [mm]	0.74	0.43	0.41
Δz_1 ; Δz_2 [mm]	0.01; 0.05	0.09; 0.12	0.14; 0.27
# turns/layer	15	8	52
# layers	13	17	20

Magnet Design: Former and Winding

- ☐ Former made of Stainless Steel 304L with ≤10 μm manufacturing tolerance.
- ☐ Continuous solenoid winding

 (like double pancake winding)

 to have one joint.
- Persistent Switchnon-inductive bifilar winding.
- ☐ Place a superconducting joint at <0.25 T region.

Persistent Switch & Joint

Quench Protection Design

☐ When local hot spot (1 inner most turn) in Coil 3 quenched, the peak temperature rise goes up to 300 K in 4 seconds.

Operation Current [A]	105
T_{op} [T]	15
Representative T_c @ Operation [T]	20
Representative NZPV [m/s]	0.5
Non-Sc / SC	1.5

- ☐ Active protection required.
 - Detect in **0.5 s**.
 - Trigger the quench heater in 0.3 s to suppress the maximum temperature rise below 200 K.

(to be determined after further analysis and tests)

SN₂-Cooling Cryostat Design

☐ Key Changes

- Open bore for gradient coil wiring

- O.D. 378 → 523 mm

- Bore size: 102/90) → 95 mm

<1st Design, 2017>

<Final Concept Design, 2019>

Magnet Bore Design

Gradient Coil 1st-Cut Design

- ☐ Computation based on the Biot-Savart formula in octant space (Symmetry).
- Wire path optimization (Nonlinear least squares problem):

Levenberg-Marquardt Algorithm (LMA) with conformity weighting

(Target Fields, Stray Field, Power Dissipation and Self-Inductance).

Limit: Dynamic Effect (eddy-currents in nearby metals), Finite Wire Dimension are not taken into account.

Conclusion

□ Design results of 1.5-T "Finger" MRI Magnet (final) and Gradient coils (1st-Cut) are presented.

☐ Active protection method will applied for reliable operation, although MgB₂ is immune to quench.

- ☐ We will complete:
 - SN₂-cooled Persistent 1.5-T MgB₂ Magnet Construction in 2019 and Operation in 2020.
 - Tabletop Osteoporosis MRI Demonstration in 2020.

This study was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01EB022062.