

Study on Screening Current-induced Stress in No-Insulation REBCO Insert

Kwanglok Kim¹, Iain Dixon¹, Thomas Painter¹, Xinbo Hu¹, Kwangmin Kim¹, Kabindra Bhattarai¹, Jeseok Bang², So Noguchi³, David Larbalestier¹, Seungyong Hahn^{1,2}

¹Applied Superconductivity Center, NHMFL, Florida State University, Tallahassee, FL 32310, US ²Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea ³Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan

Tue-Af-Po2.14-08

Introduction

Post-mortem of No-Insulation Insert (LBC3)

- The coil was tested at 4.2 K in a background field of 31.2 T.
- Overall magnetic field was measured as 45.5 T before insert coil's quench.
- There's no sign of damages observed through the visual inspection.

Figure 1. Plastic deformation of the tape.

- After a single quench, the plastically deformed tapes were identified.
- → Due to the over-strain during quenching or the screening current effect during charging?

Driving Question

- Identification of what happened in previously tested NI coils.
- Current distribution in the tape
- Forces to the sample

Experiment

LBC Type Test Coil

Table 1. Key parameters of the insert.

Table 1. Rey parameters of the misere.					
Parameters	Values				
Tape width; thickness	[mm]	4.04; 0.049			
I.R.; O.R.	[mm]	7; 13.19			
Height	[mm]	51.23			
Total number of turns		1392			
Magnet constant	[mT/A]	31.51			
Inductance	[μH]	10.37			
Characteristic resistance	$[m\Omega]$	1.8			
Time constant	[s]	5.76			

Result and Discussion

300 DP2 Power supply current Hall sensor 250 37.1 270 DP3 DP4 DP5 DP6 DP6 T50 DP6 T50

Test Coil Operation with Background Field

Figure 2. Charging profile of the insert.

- The test coil was charged to 215 A in a 30.5 T background field (ramp rate: 0.1 A/s).
- Voltage overshoot was observed at double pancake P2 1 (DP1) at the beginning of the charging (red circle).

Table 2. Estimated coil voltage.

DP3

DP2

Voltage [uV]

DP4

DP5

DP6

	144.82	181.13	191.77	191.93	181.43	146.16		
voltage [v]	-2.0 -2.5 -3.0	DP1		A63.9 3464.0 31	250 225 200 175 150 100 75 50 25	36.4 - 35.7 - 35.0 E Pell 21 - 33.6 21 - 33.6 21		
Elapsed time [s]								

Figure 3. Enlarged view of quench moment.

- Quench was initiated at DP5. However, unlike the previous LBC3, the quench detection box had been operated (trigger voltage: 0.5 V) before the quench started to propagate.
- Test coil didn't experience full quenching.

Post-mortem of the Insert Coil

Figure 4. Plastic deformation confirmed.

Two post-mortems (visual inspection and YateStar measurement) confirms the plastic deformation of the tape.
 I.D. → O.D.
 B(mT)

Figure 5. YateStar measurement results.

- DP5 (P10-11), quench initiated pancake, doesn't show the tape degradation.
- Quench possibly caused by the inner crossover.

Follow-up Experiment

Short Sample Test in Background Field

- 4 mm width tape (SuNAM)
- Array contains 7 hall sensors
- 15 T background magnet
- Field perpendicular to surface

Figure 6. Experimental setup.

Test Result

Figure 7. Obtained profiles at background field = 1 T.

• Field changed faster at HP1 which located on the non-slit edge of the sample. Electrical center seems to shift toward HP6.

Figure 8. Obtained profiles at background field = 5 T.

• HP6 shows slower increasing rate than HP1. Field increases asymmetric unlike previous case. In both cases, negative dB/dt was confirmed at HP6.

Conclusion

- Plastic deformation was confirmed at the tape from near the coil ends. According to the calculation
 results based on the critical state model*, the maximum local hoop stress is not at the end pancakes.
- Identification of current distribution in the tape sample is in progress.
- * J. Xia, et al., "Stress and strain analysis of a REBCO high field coil based on the distribution of shielding current," Supercond. Sci. and Technol., Vol. 32, 095005 (2019)

